000820908 001__ 820908
000820908 005__ 20210129224645.0
000820908 0247_ $$2doi$$a10.1016/j.orggeochem.2016.10.001
000820908 0247_ $$2ISSN$$a0146-6380
000820908 0247_ $$2ISSN$$a1873-5290
000820908 0247_ $$2WOS$$aWOS:000392534300011
000820908 037__ $$aFZJ-2016-06172
000820908 082__ $$a540
000820908 1001_ $$0P:(DE-HGF)0$$aHockun, Katja$$b0$$eCorresponding author
000820908 245__ $$aUsing distributions and stable isotopes of n-alkanes to disentangle organic matter contributions to sediments of Laguna Potrok Aike, Argentina
000820908 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000820908 3367_ $$2DRIVER$$aarticle
000820908 3367_ $$2DataCite$$aOutput Types/Journal article
000820908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479884315_25245
000820908 3367_ $$2BibTeX$$aARTICLE
000820908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820908 3367_ $$00$$2EndNote$$aJournal Article
000820908 520__ $$aWhen using biomarkers such as n-alkanes as tools for paleo-environmental reconstructions, it is imperative to determine their specific sources for each setting. Toward that goal, we analyzed a set of various potential organic matter (OM) sources such as aquatic and terrestrial plants, dust, and soils from Laguna Potrok Aike (LPA) and surrounding areas in southern Patagonia. We determined chain length distributions and hydrogen (δD) and carbon (δ13C) isotopic compositions of n-alkanes of different OM sources in order to quantify their relative contributions to lake sediments. Our results reveal that the mid-chain n-alkane, n-C23, is predominantly produced by submerged aquatic plants, whereas long-chain n-alkanes (n-C29–n-C31) are derived from various terrestrial sources. We estimated their relative contributions to the sediment using two approaches, i.e., based on the n-alkane distributions and their δD and δ13C values. Both approaches result in similar estimates of aquatic and terrestrial contributions for mid- and long-chain n-alkanes to the sediment. 62–73% of the mid-chain n-C23 alkanes originate from aquatic sources while 66–77% of the long-chain n-alkanes originate from dust and 14–30% from terrestrial plants. Our study shows that mid-chain n-alkanes such as the n-C23 alkane in LPA are derived mainly from aquatic macrophytes and thus have the potential to record changes in lake-water isotopic composition. In contrast, the n-C29 alkane reflects the isotopic signal of various terrestrial sources from southern Patagonia.
000820908 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820908 588__ $$aDataset connected to CrossRef
000820908 7001_ $$0P:(DE-HGF)0$$aMollenhauer, Gesine$$b1
000820908 7001_ $$0P:(DE-HGF)0$$aHo, Sze Ling$$b2
000820908 7001_ $$0P:(DE-HGF)0$$aHefter, Jens$$b3
000820908 7001_ $$0P:(DE-HGF)0$$aOhlendorf, Christian$$b4
000820908 7001_ $$0P:(DE-HGF)0$$aZolitschka, Bernd$$b5
000820908 7001_ $$0P:(DE-HGF)0$$aMayr, Christoph$$b6
000820908 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b7
000820908 7001_ $$0P:(DE-HGF)0$$aSchefuß, Enno$$b8
000820908 773__ $$0PERI:(DE-600)2018075-5$$a10.1016/j.orggeochem.2016.10.001$$gp. S0146638016302406$$p110–119$$tOrganic geochemistry$$v102$$x0146-6380$$y2016
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.pdf$$yRestricted
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.gif?subformat=icon$$xicon$$yRestricted
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820908 8564_ $$uhttps://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820908 909CO $$ooai:juser.fz-juelich.de:820908$$pVDB:Earth_Environment$$pVDB
000820908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b7$$kFZJ
000820908 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820908 9141_ $$y2016
000820908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820908 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820908 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bORG GEOCHEM : 2015
000820908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820908 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820908 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820908 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820908 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820908 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820908 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820908 980__ $$ajournal
000820908 980__ $$aVDB
000820908 980__ $$aUNRESTRICTED
000820908 980__ $$aI:(DE-Juel1)IBG-3-20101118