001     820908
005     20210129224645.0
024 7 _ |a 10.1016/j.orggeochem.2016.10.001
|2 doi
024 7 _ |a 0146-6380
|2 ISSN
024 7 _ |a 1873-5290
|2 ISSN
024 7 _ |a WOS:000392534300011
|2 WOS
037 _ _ |a FZJ-2016-06172
082 _ _ |a 540
100 1 _ |a Hockun, Katja
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Using distributions and stable isotopes of n-alkanes to disentangle organic matter contributions to sediments of Laguna Potrok Aike, Argentina
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479884315_25245
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a When using biomarkers such as n-alkanes as tools for paleo-environmental reconstructions, it is imperative to determine their specific sources for each setting. Toward that goal, we analyzed a set of various potential organic matter (OM) sources such as aquatic and terrestrial plants, dust, and soils from Laguna Potrok Aike (LPA) and surrounding areas in southern Patagonia. We determined chain length distributions and hydrogen (δD) and carbon (δ13C) isotopic compositions of n-alkanes of different OM sources in order to quantify their relative contributions to lake sediments. Our results reveal that the mid-chain n-alkane, n-C23, is predominantly produced by submerged aquatic plants, whereas long-chain n-alkanes (n-C29–n-C31) are derived from various terrestrial sources. We estimated their relative contributions to the sediment using two approaches, i.e., based on the n-alkane distributions and their δD and δ13C values. Both approaches result in similar estimates of aquatic and terrestrial contributions for mid- and long-chain n-alkanes to the sediment. 62–73% of the mid-chain n-C23 alkanes originate from aquatic sources while 66–77% of the long-chain n-alkanes originate from dust and 14–30% from terrestrial plants. Our study shows that mid-chain n-alkanes such as the n-C23 alkane in LPA are derived mainly from aquatic macrophytes and thus have the potential to record changes in lake-water isotopic composition. In contrast, the n-C29 alkane reflects the isotopic signal of various terrestrial sources from southern Patagonia.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mollenhauer, Gesine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ho, Sze Ling
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hefter, Jens
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ohlendorf, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zolitschka, Bernd
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mayr, Christoph
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lücke, Andreas
|0 P:(DE-Juel1)129567
|b 7
700 1 _ |a Schefuß, Enno
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1016/j.orggeochem.2016.10.001
|g p. S0146638016302406
|0 PERI:(DE-600)2018075-5
|p 110–119
|t Organic geochemistry
|v 102
|y 2016
|x 0146-6380
856 4 _ |u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820908/files/1-s2.0-S0146638016302406-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820908
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129567
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ORG GEOCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21