000820909 001__ 820909
000820909 005__ 20210129224646.0
000820909 0247_ $$2doi$$a10.1016/j.geoderma.2016.04.028
000820909 0247_ $$2ISSN$$a0016-7061
000820909 0247_ $$2ISSN$$a1872-6259
000820909 0247_ $$2WOS$$aWOS:000377839500007
000820909 037__ $$aFZJ-2016-06173
000820909 082__ $$a550
000820909 1001_ $$0P:(DE-Juel1)165709$$aDe Feudis, M.$$b0$$eCorresponding author
000820909 245__ $$aEffect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy)
000820909 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000820909 3367_ $$2DRIVER$$aarticle
000820909 3367_ $$2DataCite$$aOutput Types/Journal article
000820909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479135011_4507
000820909 3367_ $$2BibTeX$$aARTICLE
000820909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820909 3367_ $$00$$2EndNote$$aJournal Article
000820909 520__ $$aPhosphorus (P) is an important nutrient for plant growth but its availability in soil is limited. Although plants are able to respond to the P shortage, climatic factors might modify the soil-plant-microorganisms system and reduce P availability. In this study we evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results showed that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m above sea level, as the soils at higher altitude showed greater total organic C (TOC) content, organic and available P contents, and alkaline mono-phosphatases activity than the soils at lower altitude. Further, at the higher altitude, a marked rhizosphere effect was detected, as indicated by greater concentration of TOC, water extractable organic C, and available P, and its fulfillment was mainly attributed to the release of labile organics through rhizodeposition. The availability of easy degradable compounds in the rhizosphere should foster the mineralization of the organic matter with a consequent increase of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community is key for fuelling the rhizospheric processes and, in particular, P cycling.
000820909 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820909 588__ $$aDataset connected to CrossRef
000820909 7001_ $$0P:(DE-HGF)0$$aCardelli, V.$$b1
000820909 7001_ $$0P:(DE-HGF)0$$aMassaccesi, L.$$b2
000820909 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b3
000820909 7001_ $$0P:(DE-HGF)0$$aWillbold, S.$$b4
000820909 7001_ $$0P:(DE-HGF)0$$aCocco, S.$$b5
000820909 7001_ $$0P:(DE-HGF)0$$aCorti, G.$$b6
000820909 7001_ $$0P:(DE-HGF)0$$aAgnelli, A.$$b7
000820909 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2016.04.028$$gVol. 276, p. 53 - 63$$p53 - 63$$tGeoderma$$v276$$x0016-7061$$y2016
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.pdf$$yRestricted
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.gif?subformat=icon$$xicon$$yRestricted
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820909 8564_ $$uhttps://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820909 909CO $$ooai:juser.fz-juelich.de:820909$$pVDB:Earth_Environment$$pVDB
000820909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b3$$kFZJ
000820909 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820909 9141_ $$y2016
000820909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820909 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820909 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820909 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000820909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820909 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820909 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820909 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820909 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820909 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820909 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820909 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820909 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820909 980__ $$ajournal
000820909 980__ $$aVDB
000820909 980__ $$aUNRESTRICTED
000820909 980__ $$aI:(DE-Juel1)IBG-3-20101118