Journal Article FZJ-2016-06173

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy)

 ;  ;  ;  ;  ;  ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Geoderma 276, 53 - 63 () [10.1016/j.geoderma.2016.04.028]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Phosphorus (P) is an important nutrient for plant growth but its availability in soil is limited. Although plants are able to respond to the P shortage, climatic factors might modify the soil-plant-microorganisms system and reduce P availability. In this study we evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results showed that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m above sea level, as the soils at higher altitude showed greater total organic C (TOC) content, organic and available P contents, and alkaline mono-phosphatases activity than the soils at lower altitude. Further, at the higher altitude, a marked rhizosphere effect was detected, as indicated by greater concentration of TOC, water extractable organic C, and available P, and its fulfillment was mainly attributed to the release of labile organics through rhizodeposition. The availability of easy degradable compounds in the rhizosphere should foster the mineralization of the organic matter with a consequent increase of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community is key for fuelling the rhizospheric processes and, in particular, P cycling.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2016-11-14, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)