001     820909
005     20210129224646.0
024 7 _ |a 10.1016/j.geoderma.2016.04.028
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a WOS:000377839500007
|2 WOS
037 _ _ |a FZJ-2016-06173
082 _ _ |a 550
100 1 _ |a De Feudis, M.
|0 P:(DE-Juel1)165709
|b 0
|e Corresponding author
245 _ _ |a Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy)
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479135011_4507
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorus (P) is an important nutrient for plant growth but its availability in soil is limited. Although plants are able to respond to the P shortage, climatic factors might modify the soil-plant-microorganisms system and reduce P availability. In this study we evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results showed that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m above sea level, as the soils at higher altitude showed greater total organic C (TOC) content, organic and available P contents, and alkaline mono-phosphatases activity than the soils at lower altitude. Further, at the higher altitude, a marked rhizosphere effect was detected, as indicated by greater concentration of TOC, water extractable organic C, and available P, and its fulfillment was mainly attributed to the release of labile organics through rhizodeposition. The availability of easy degradable compounds in the rhizosphere should foster the mineralization of the organic matter with a consequent increase of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community is key for fuelling the rhizospheric processes and, in particular, P cycling.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cardelli, V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Massaccesi, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 3
700 1 _ |a Willbold, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cocco, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Corti, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Agnelli, A.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.geoderma.2016.04.028
|g Vol. 276, p. 53 - 63
|0 PERI:(DE-600)2001729-7
|p 53 - 63
|t Geoderma
|v 276
|y 2016
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820909/files/1-s2.0-S0016706116301859-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820909
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21