000821136 001__ 821136
000821136 005__ 20210129224810.0
000821136 0247_ $$2doi$$a10.1109/JEDS.2015.2392793
000821136 0247_ $$2Handle$$a2128/13043
000821136 0247_ $$2WOS$$aWOS:000369884400020
000821136 037__ $$aFZJ-2016-06379
000821136 082__ $$a620
000821136 1001_ $$0P:(DE-HGF)0$$aStrangio, Sebastiano$$b0$$eCorresponding author
000821136 245__ $$aImpact of TFET Unidirectionality and Ambipolarity on the Performance of 6T SRAM Cells
000821136 260__ $$a[New York, NY]$$bIEEE$$c2015
000821136 3367_ $$2DRIVER$$aarticle
000821136 3367_ $$2DataCite$$aOutput Types/Journal article
000821136 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480421281_20525
000821136 3367_ $$2BibTeX$$aARTICLE
000821136 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821136 3367_ $$00$$2EndNote$$aJournal Article
000821136 520__ $$aWe use mixed device-circuit simulations to predict the performance of 6T static RAM (SRAM) cells implemented with tunnel-FETs (TFETs). Idealized template devices are used to assess the impact of device unidirectionality, which is inherent to TFETs and identify the most promising configuration for the access transistors. The same template devices are used to investigate the VDD range, where TFETs may be advantageous compared to conventional CMOS. The impact of device ambipolarity on SRAM operation is also analyzed. Realistic device templates extracted from experimental data of fabricated state-of-the-art silicon pTFET are then used to estimate the performance gap between the simulation of idealized TFETs and the best experimental implementations.
000821136 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000821136 588__ $$aDataset connected to CrossRef
000821136 7001_ $$0P:(DE-HGF)0$$aPalestri, Pierpaolo$$b1
000821136 7001_ $$0P:(DE-HGF)0$$aEsseni, DAVID$$b2
000821136 7001_ $$0P:(DE-HGF)0$$aSelmi, Luca$$b3
000821136 7001_ $$0P:(DE-HGF)0$$aCrupi, Felice$$b4
000821136 7001_ $$0P:(DE-HGF)0$$aRichter, Simon$$b5
000821136 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b6$$ufzj
000821136 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b7$$ufzj
000821136 773__ $$0PERI:(DE-600)2696552-5$$a10.1109/JEDS.2015.2392793$$gVol. 3, no. 3, p. 223 - 232$$n3$$p223 - 232$$tIEEE journal of the Electron Devices Society$$v3$$x2168-6734$$y2015
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.pdf$$yOpenAccess
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.gif?subformat=icon$$xicon$$yOpenAccess
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000821136 8564_ $$uhttps://juser.fz-juelich.de/record/821136/files/07010882.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000821136 909CO $$ooai:juser.fz-juelich.de:821136$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000821136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5960$$aForschungszentrum Jülich$$b5$$kFZJ
000821136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b6$$kFZJ
000821136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b7$$kFZJ
000821136 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000821136 9141_ $$y2016
000821136 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821136 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000821136 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000821136 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821136 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821136 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000821136 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000821136 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821136 920__ $$lyes
000821136 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000821136 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000821136 980__ $$ajournal
000821136 980__ $$aVDB
000821136 980__ $$aUNRESTRICTED
000821136 980__ $$aI:(DE-Juel1)PGI-9-20110106
000821136 980__ $$aI:(DE-82)080009_20140620
000821136 9801_ $$aFullTexts