001     821137
005     20210129224810.0
024 7 _ |a 10.1016/j.sse.2015.02.018
|2 doi
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a WOS:000353004400017
|2 WOS
037 _ _ |a FZJ-2016-06380
082 _ _ |a 530
100 1 _ |a Richter, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Improved Tunnel-FET inverter performance with SiGe/Si heterostructure nanowire TFETs by reduction of ambipolarity
260 _ _ |a Oxford [u.a.]
|c 2015
|b Pergamon, Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480422073_20531
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Complementary MOSFET and Tunnel-FET inverters based on tri-gated strained Si nanowire arrays are demonstrated. The voltage transfer characteristics as well as the inverter supply currents of both inverter types are analyzed and compared. A degradation of the inverter output voltage is observed due to the ambipolar transfer characteristics of the symmetric homostructure TFET devices. Emulated TFET inverters based on the measured transfer characteristics of SiGe/Si heterostructure nanowire array n-channel TFETs with reduced ambipolarity demonstrate improved inverter switching for supply voltages down to VDD = 0.2 V.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Trellenkamp, S.
|0 P:(DE-Juel1)128856
|b 1
700 1 _ |a Schäfer, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bourdelle, K. K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Q. T.
|0 P:(DE-Juel1)128649
|b 5
|u fzj
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 6
|u fzj
773 _ _ |a 10.1016/j.sse.2015.02.018
|g Vol. 108, p. 97 - 103
|0 PERI:(DE-600)2012825-3
|p 97 - 103
|t Solid state electronics
|v 108
|y 2015
|x 0038-1101
856 4 _ |u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/821137/files/1-s2.0-S0038110115000635-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:821137
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5960
910 1 _ |a PGI-8-PT
|0 I:(DE-Juel1)PGI-8-PT-20110228
|k PGI-8-PT
|b 1
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144017
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE ELECTRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21