000823948 001__ 823948 000823948 005__ 20210129224911.0 000823948 0247_ $$2doi$$a10.1111/pce.12868 000823948 0247_ $$2ISSN$$a0140-7791 000823948 0247_ $$2ISSN$$a1365-3040 000823948 0247_ $$2WOS$$aWOS:000393788500013 000823948 0247_ $$2altmetric$$aaltmetric:13907671 000823948 0247_ $$2pmid$$apmid:27859348 000823948 037__ $$aFZJ-2016-06576 000823948 041__ $$aEnglish 000823948 082__ $$a570 000823948 1001_ $$0P:(DE-HGF)0$$aFaralli, Michele$$b0$$eCorresponding author 000823948 245__ $$aRising CO$_{2}$ from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability. 000823948 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2017 000823948 3367_ $$2DRIVER$$aarticle 000823948 3367_ $$2DataCite$$aOutput Types/Journal article 000823948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484141712_30602 000823948 3367_ $$2BibTeX$$aARTICLE 000823948 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000823948 3367_ $$00$$2EndNote$$aJournal Article 000823948 500__ $$aSupported by COST Action Plant Phenotyping via a Short Term Scientific Mission. 000823948 520__ $$aThe productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well-watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water-use efficiency and growth under non-stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance. 000823948 536__ $$0G:(DE-HGF)POF3-252$$a252 - Sustainable Plant Production in a Changing Environment (POF3-252)$$cPOF3-252$$fPOF III$$x0 000823948 588__ $$aDataset connected to CrossRef 000823948 7001_ $$0P:(DE-HGF)0$$aGrove, Ivan G.$$b1 000823948 7001_ $$0P:(DE-HGF)0$$aHare, Martin C.$$b2 000823948 7001_ $$0P:(DE-HGF)0$$aKettlewell, Peter S.$$b3 000823948 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b4 000823948 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.12868$$n2$$p317–325 $$tPlant, cell & environment$$v40$$x0140-7791$$y2017 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.pdf$$yRestricted 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.gif?subformat=icon$$xicon$$yRestricted 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180$$xicon-180$$yRestricted 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640$$xicon-640$$yRestricted 000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yRestricted 000823948 909CO $$ooai:juser.fz-juelich.de:823948$$pVDB:Earth_Environment$$pVDB 000823948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b4$$kFZJ 000823948 9131_ $$0G:(DE-HGF)POF3-252$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Plant Production in a Changing Environment$$x0 000823948 9141_ $$y2017 000823948 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000823948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2015 000823948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000823948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000823948 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000823948 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000823948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000823948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000823948 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000823948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000823948 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000823948 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000823948 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000823948 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000823948 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2015 000823948 920__ $$lyes 000823948 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000823948 980__ $$ajournal 000823948 980__ $$aVDB 000823948 980__ $$aI:(DE-Juel1)IBG-2-20101118 000823948 980__ $$aUNRESTRICTED