000823948 001__ 823948
000823948 005__ 20210129224911.0
000823948 0247_ $$2doi$$a10.1111/pce.12868
000823948 0247_ $$2ISSN$$a0140-7791
000823948 0247_ $$2ISSN$$a1365-3040
000823948 0247_ $$2WOS$$aWOS:000393788500013
000823948 0247_ $$2altmetric$$aaltmetric:13907671
000823948 0247_ $$2pmid$$apmid:27859348
000823948 037__ $$aFZJ-2016-06576
000823948 041__ $$aEnglish
000823948 082__ $$a570
000823948 1001_ $$0P:(DE-HGF)0$$aFaralli, Michele$$b0$$eCorresponding author
000823948 245__ $$aRising CO$_{2}$ from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability.
000823948 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2017
000823948 3367_ $$2DRIVER$$aarticle
000823948 3367_ $$2DataCite$$aOutput Types/Journal article
000823948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484141712_30602
000823948 3367_ $$2BibTeX$$aARTICLE
000823948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823948 3367_ $$00$$2EndNote$$aJournal Article
000823948 500__ $$aSupported by COST Action Plant Phenotyping via a Short Term Scientific Mission.
000823948 520__ $$aThe productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well-watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water-use efficiency and growth under non-stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance.
000823948 536__ $$0G:(DE-HGF)POF3-252$$a252 - Sustainable Plant Production in a Changing Environment (POF3-252)$$cPOF3-252$$fPOF III$$x0
000823948 588__ $$aDataset connected to CrossRef
000823948 7001_ $$0P:(DE-HGF)0$$aGrove, Ivan G.$$b1
000823948 7001_ $$0P:(DE-HGF)0$$aHare, Martin C.$$b2
000823948 7001_ $$0P:(DE-HGF)0$$aKettlewell, Peter S.$$b3
000823948 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b4
000823948 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.12868$$n2$$p317–325 $$tPlant, cell & environment$$v40$$x0140-7791$$y2017
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.pdf$$yRestricted
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.gif?subformat=icon$$xicon$$yRestricted
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823948 8564_ $$uhttps://juser.fz-juelich.de/record/823948/files/Faralli_et_al-2017-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823948 909CO $$ooai:juser.fz-juelich.de:823948$$pVDB:Earth_Environment$$pVDB
000823948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b4$$kFZJ
000823948 9131_ $$0G:(DE-HGF)POF3-252$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Plant Production in a Changing Environment$$x0
000823948 9141_ $$y2017
000823948 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000823948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2015
000823948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823948 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823948 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823948 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823948 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823948 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000823948 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000823948 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000823948 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2015
000823948 920__ $$lyes
000823948 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000823948 980__ $$ajournal
000823948 980__ $$aVDB
000823948 980__ $$aI:(DE-Juel1)IBG-2-20101118
000823948 980__ $$aUNRESTRICTED