Hauptseite > Publikationsdatenbank > Numerical correction of phase errors due to leakage currents in wideband EIT measurements. |
Abstract | FZJ-2016-06781 |
; ; ;
2016
Abstract: Advanced model-based data correction methods are needed in order to determine the small phase response of low-polarizable soils and rocks in the higher frequency range up to 10 kHz. Methods have been developed to correct several system-dependent errors, such as amplification errors, signal drift, current measurement errors, potential measurement errors due to high electrode impedances, propagation delay of the signal due to the long cables, and phase errors introduced by inductive coupling between the electrode cables. However, measurements at test sites with high resistivity have shown a new dominating phase error, which was found to be related to capacitive leakage currents between system ground and the soil. In order to correct this error, we enhanced the FEM modelling used for the reconstruction of the electrical conductivity distribution. Using this new formulation of the FEM forward model, this source of error was reduced by a factor of five or more. This enables an electrical conductivity reconstruction for frequencies up to 10 kHz. In future work, it will be investigated whether the capacitive leakage currents can be reduced by optimization of the cable layout. In any case, it is helpful to use the leakage current as a proxy for data error during data filtering, and it can also be used to decide if the enhanced FEM model presented here should be used.
![]() |
The record appears in these collections: |