000824290 001__ 824290
000824290 005__ 20210129225013.0
000824290 0247_ $$2doi$$a10.3390/biomimetics1010007
000824290 0247_ $$2Handle$$a2128/13047
000824290 0247_ $$2WOS$$aWOS:000414986300006
000824290 0247_ $$2altmetric$$aaltmetric:14673376
000824290 037__ $$aFZJ-2016-06909
000824290 082__ $$a570
000824290 1001_ $$0P:(DE-HGF)0$$aPutignano, Carmine$$b0$$eCorresponding author
000824290 245__ $$aA Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces
000824290 260__ $$aBasel$$bMDPI$$c2016
000824290 3367_ $$2DRIVER$$aarticle
000824290 3367_ $$2DataCite$$aOutput Types/Journal article
000824290 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480424739_20524
000824290 3367_ $$2BibTeX$$aARTICLE
000824290 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824290 3367_ $$00$$2EndNote$$aJournal Article
000824290 520__ $$aAdhesion of biological systems is often made possible through thin elastic layers, such as human skin. To address the question of when a layer is sufficiently thin to become adhesive, we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness of an elastic body that is supported by a fluid foundation. We observed that thin layers can much better accommodate rough counterfaces than thick structures. As a result, the contact area is enlarged, in particular, when the width of the layer w approaches or even falls below the short-wavelength cutoff λs of the surface spectra. In the latter case, the proportionality coefficient between area and load scales is (w/λs)3 , which is consistent with Persson’s contact mechanics theory.
000824290 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000824290 588__ $$aDataset connected to CrossRef
000824290 7001_ $$0P:(DE-Juel1)145207$$aDapp, Wolfgang$$b1$$eCorresponding author
000824290 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b2$$eCorresponding author$$ufzj
000824290 773__ $$0PERI:(DE-600)2856245-8$$a10.3390/biomimetics1010007$$gVol. 1, no. 1, p. 7 -$$n1$$p7 -$$tBiomimetics$$v1$$x2313-7673$$y2016
000824290 8564_ $$uhttps://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.pdf$$yOpenAccess
000824290 8564_ $$uhttps://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.gif?subformat=icon$$xicon$$yOpenAccess
000824290 8564_ $$uhttps://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824290 8564_ $$uhttps://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824290 8564_ $$uhttps://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824290 909CO $$ooai:juser.fz-juelich.de:824290$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000824290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich$$b2$$kFZJ
000824290 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000824290 9141_ $$y2016
000824290 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824290 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824290 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000824290 980__ $$ajournal
000824290 980__ $$aVDB
000824290 980__ $$aUNRESTRICTED
000824290 980__ $$aI:(DE-Juel1)JSC-20090406
000824290 9801_ $$aFullTexts