001     824290
005     20210129225013.0
024 7 _ |a 10.3390/biomimetics1010007
|2 doi
024 7 _ |a 2128/13047
|2 Handle
024 7 _ |a WOS:000414986300006
|2 WOS
024 7 _ |a altmetric:14673376
|2 altmetric
037 _ _ |a FZJ-2016-06909
082 _ _ |a 570
100 1 _ |a Putignano, Carmine
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces
260 _ _ |a Basel
|c 2016
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480424739_20524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adhesion of biological systems is often made possible through thin elastic layers, such as human skin. To address the question of when a layer is sufficiently thin to become adhesive, we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness of an elastic body that is supported by a fluid foundation. We observed that thin layers can much better accommodate rough counterfaces than thick structures. As a result, the contact area is enlarged, in particular, when the width of the layer w approaches or even falls below the short-wavelength cutoff λs of the surface spectra. In the latter case, the proportionality coefficient between area and load scales is (w/λs)3 , which is consistent with Persson’s contact mechanics theory.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dapp, Wolfgang
|0 P:(DE-Juel1)145207
|b 1
|e Corresponding author
700 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.3390/biomimetics1010007
|g Vol. 1, no. 1, p. 7 -
|0 PERI:(DE-600)2856245-8
|n 1
|p 7 -
|t Biomimetics
|v 1
|y 2016
|x 2313-7673
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:824290
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144442
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21