Home > Publications database > A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces > print |
001 | 824290 | ||
005 | 20210129225013.0 | ||
024 | 7 | _ | |a 10.3390/biomimetics1010007 |2 doi |
024 | 7 | _ | |a 2128/13047 |2 Handle |
024 | 7 | _ | |a WOS:000414986300006 |2 WOS |
024 | 7 | _ | |a altmetric:14673376 |2 altmetric |
037 | _ | _ | |a FZJ-2016-06909 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Putignano, Carmine |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces |
260 | _ | _ | |a Basel |c 2016 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1480424739_20524 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Adhesion of biological systems is often made possible through thin elastic layers, such as human skin. To address the question of when a layer is sufficiently thin to become adhesive, we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness of an elastic body that is supported by a fluid foundation. We observed that thin layers can much better accommodate rough counterfaces than thick structures. As a result, the contact area is enlarged, in particular, when the width of the layer w approaches or even falls below the short-wavelength cutoff λs of the surface spectra. In the latter case, the proportionality coefficient between area and load scales is (w/λs)3 , which is consistent with Persson’s contact mechanics theory. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dapp, Wolfgang |0 P:(DE-Juel1)145207 |b 1 |e Corresponding author |
700 | 1 | _ | |a Müser, Martin |0 P:(DE-Juel1)144442 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.3390/biomimetics1010007 |g Vol. 1, no. 1, p. 7 - |0 PERI:(DE-600)2856245-8 |n 1 |p 7 - |t Biomimetics |v 1 |y 2016 |x 2313-7673 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/824290/files/biomimetics-01-00007.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:824290 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144442 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|