001     824447
005     20210129225038.0
024 7 _ |a 10.7567/JJAP.55.06GJ09
|2 doi
024 7 _ |a 0021-4922
|2 ISSN
024 7 _ |a 1347-4065
|2 ISSN
024 7 _ |a WOS:000377484100050
|2 WOS
037 _ _ |a FZJ-2016-07036
082 _ _ |a 530
100 1 _ |a Tsuruoka, Tohru
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Humidity effects on the redox reactions and ionic transport in a Cu/Ta$_{2}$ O$_{5}$ /Pt atomic switch structure
260 _ _ |a Bristol
|c 2016
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480662997_22148
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Redox reactions at the Cu/Ta$_{2}$ O$_{5}$ interface and subsequent Cu ion transport in a Ta2O5 film have been investigated by means of cyclic voltammetry (CV) measurements. Under positive bias to the Cu electrode, Cu is preferentially oxidized to Cu2+ and then to Cu+. Subsequent negative bias causes a reduction of the oxidized Cu ions at the interface. It was found that CV curves change drastically with varied relative humidity levels from 5 to 85%. At higher humidity levels, the ion concentrations and diffusion coefficients, estimated from the CV curves, suggest increased redox reaction rates and a significant contribution of proton conduction to the ionic transport. The results indicate that the redox reactions of moisture are rate-limiting and highlight the importance of water uptake by the matrix oxide film in understanding and controlling the resistive switching behavior of oxide-based atomic switches.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 1
700 1 _ |a Mannequin, Cedric
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hasegawa, Tsuyoshi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 4
|u fzj
700 1 _ |a Aono, Masakazu
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.7567/JJAP.55.06GJ09
|g Vol. 55, no. 6S1, p. 06GJ09 -
|0 PERI:(DE-600)2006801-3
|n 6S1
|p 06GJ09 -
|t Japanese journal of applied physics
|v 55
|y 2016
|x 1347-4065
856 4 _ |u https://juser.fz-juelich.de/record/824447/files/Tsuruoka_2016_Jpn._J._Appl._Phys._55_06GJ09.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/824447/files/Tsuruoka_2016_Jpn._J._Appl._Phys._55_06GJ09.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:824447
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JPN J APPL PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21