001     824449
005     20210129225039.0
024 7 _ |a 10.1016/j.mee.2016.01.025
|2 doi
024 7 _ |a 0167-9317
|2 ISSN
024 7 _ |a 1873-5568
|2 ISSN
024 7 _ |a WOS:000378363400007
|2 WOS
037 _ _ |a FZJ-2016-07038
082 _ _ |a 620
100 1 _ |a Kim, Wonjoo
|0 P:(DE-Juel1)159348
|b 0
|e Corresponding author
245 _ _ |a Nonlinearity analysis of TaOX redox-based RRAM
260 _ _ |a [S.l.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1557382055_24088
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the passive crossbar integration of redox-based resistive RAM (ReRAM), understanding the nonlinearity (NL) of the I–V characteristics and its impact on the device parameters are highly required. Here, we report the NL of TiN/TaOx/Ta/Pt ReRAM for different switching oxide thicknesses (7.0 nm vs. 3.5 nm) and various device sizes (85 nm × 85 nm to 135 nm × 135 nm) as function of SET current compliance levels as well as the SET current compliance impact on the resistance ratio (off to on). The NL in pulsed AC mode improves with lower current compliance levels regardless of device area. At extremely low compliance level, the device shows the highest NL of 12 in the AC mode. The resistance ratio and the NL parameter in the ReRAM device are observed to be the competing factors as the resistance ratio degrades with improvement of the NL at the lower current compliance level. However, the NL parameter is independent of the switching layer thickness.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rösgen, Bernd
|0 P:(DE-Juel1)144776
|b 1
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)157669
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
700 1 _ |a Wouters, Dirk
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
|u fzj
700 1 _ |a Rana, Vikas
|0 P:(DE-Juel1)145504
|b 6
773 _ _ |a 10.1016/j.mee.2016.01.025
|g Vol. 154, p. 38 - 41
|0 PERI:(DE-600)1497065-x
|p 38 - 41
|t Microelectronic engineering
|v 154
|y 2016
|x 0167-9317
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824449/files/1-s2.0-S0167931716300259-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:824449
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145504
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROELECTRON ENG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21