001     824616
005     20240711085641.0
024 7 _ |a 10.1016/j.memsci.2016.10.037
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a WOS:000392769000035
|2 WOS
037 _ _ |a FZJ-2016-07179
082 _ _ |a 570
100 1 _ |a Unije, U.
|0 P:(DE-Juel1)164278
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481118360_4425
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Asymmetric membranes provide a low ionic resistance of the functional separation layer together with a high mechanical stability. However, the microstructure of the porous support in the membrane assembly affects the overall flux significantly. This effect was studied by applying the binary friction model (BFM) for the support together with a modified Wagner equation for the dense membrane using transport relevant parameters obtained from micro computed tomography data of a tape cast Ba0.5Sr0.5Co0.8Fe0.2O3–δ support. The influence of different pore diameters and thicknesses of the support were compared for different feed gases (oxygen and air) and flow configurations (3-end, 4-end, assembly orientation).The effect of the support at large pore diameters (>35 µm) for the 3-end mode transport process using oxygen as feed gas, was negligible. This was not the case for the 4-end mode irrespective of the feed gas, and for the 3-end mode using air as feed gas. This was attributed to the binary diffusion term in the BFM. Thin small-pored supports yield the same flux as thick large-pored supports considering a non-linear relationship between thickness and pore size. This can be used for the optimization of the support's microstructure with regards to mechanical strength and permeability.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mücke, R.
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Niehoff, P.
|0 P:(DE-Juel1)144671
|b 2
|u fzj
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 3
|u fzj
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 4
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
773 _ _ |a 10.1016/j.memsci.2016.10.037
|g Vol. 524, p. 334 - 343
|0 PERI:(DE-600)1491419-0
|p 334 - 343
|t Journal of membrane science
|v 524
|y 2017
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824616/files/1-s2.0-S0376738816306469-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:824616
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144671
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21