Journal Article FZJ-2016-07179

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane

 ;  ;  ;  ;  ;

2017
Elsevier New York, NY [u.a.]

Journal of membrane science 524, 334 - 343 () [10.1016/j.memsci.2016.10.037]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Asymmetric membranes provide a low ionic resistance of the functional separation layer together with a high mechanical stability. However, the microstructure of the porous support in the membrane assembly affects the overall flux significantly. This effect was studied by applying the binary friction model (BFM) for the support together with a modified Wagner equation for the dense membrane using transport relevant parameters obtained from micro computed tomography data of a tape cast Ba0.5Sr0.5Co0.8Fe0.2O3–δ support. The influence of different pore diameters and thicknesses of the support were compared for different feed gases (oxygen and air) and flow configurations (3-end, 4-end, assembly orientation).The effect of the support at large pore diameters (>35 µm) for the 3-end mode transport process using oxygen as feed gas, was negligible. This was not the case for the 4-end mode irrespective of the feed gas, and for the 3-end mode using air as feed gas. This was attributed to the binary diffusion term in the BFM. Thin small-pored supports yield the same flux as thick large-pored supports considering a non-linear relationship between thickness and pore size. This can be used for the optimization of the support's microstructure with regards to mechanical strength and permeability.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2016-12-07, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)