000824694 001__ 824694
000824694 005__ 20240709094417.0
000824694 0247_ $$2doi$$a10.1002/maco.201608831
000824694 0247_ $$2ISSN$$a0043-2822
000824694 0247_ $$2ISSN$$a0947-5117
000824694 0247_ $$2ISSN$$a1521-4176
000824694 0247_ $$2WOS$$aWOS:000394663600006
000824694 037__ $$aFZJ-2016-07252
000824694 041__ $$aEnglish
000824694 082__ $$a670
000824694 1001_ $$0P:(DE-Juel1)129727$$aHuczkowski, P.$$b0$$eCorresponding author
000824694 245__ $$aEffect of Gas Flow Rate on Oxidation Behaviour of Alloy 625 in Wet Air in the Temperature Range 900-1000 °C
000824694 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2017
000824694 3367_ $$2DRIVER$$aarticle
000824694 3367_ $$2DataCite$$aOutput Types/Journal article
000824694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581674059_5059
000824694 3367_ $$2BibTeX$$aARTICLE
000824694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824694 3367_ $$00$$2EndNote$$aJournal Article
000824694 520__ $$aIn many industrial processes, the flow rate of hot gaseous service environments may be in the range of several m/s. In the present paper, the effect of gas flow rate on the high temperature oxidation behaviour of alloy 625 in wet air is presented. The gas velocity was varied from near static conditions to linear gas flow rates up to 6 m/s. The oxidation kinetics were studied by gravimetry during cyclic/discontinuous testing at 900 and 1000 °C. The oxide scales and the subsurface depletion zones formed during exposure were studied by light optical microscopy, scanning electron microscopy with energy dispersive X-ray analysis and, for selected specimens, by electron backscatter diffraction. It was found that Cr loss due to formation of volatile species is substantially enhanced by high gas flow rates thus significantly influencing the oxidation limited life time of the oxidising component. Within the studied range of flow rates no plateau value was reached, the Cr loss being substantially larger at a flow of 6 m/s than at 0.7 m/s. Additionally, it was found that geometrical factors of the test specimen substantially affected the extent of volatile species formation. Especially the leading edge of the specimen exhibited more extensive Cr loss than the other specimen areas.
000824694 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000824694 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x1
000824694 588__ $$aDataset connected to CrossRef
000824694 7001_ $$0P:(DE-Juel1)129883$$aLehnert, W.$$b1
000824694 7001_ $$0P:(DE-HGF)0$$aAngermann, H.-H.$$b2
000824694 7001_ $$0P:(DE-Juel1)129701$$aChyrkin, A.$$b3
000824694 7001_ $$0P:(DE-Juel1)156565$$aPillai, R.$$b4
000824694 7001_ $$0P:(DE-Juel1)145209$$aGrüner, D.$$b5
000824694 7001_ $$0P:(DE-Juel1)145343$$aHejrani, E.$$b6
000824694 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b7
000824694 773__ $$0PERI:(DE-600)1481051-7$$a10.1002/maco.201608831$$n2$$p159-170$$tMaterials and corrosion$$v68$$x0947-5117$$y2017
000824694 8767_ $$87041387$$92017-02-20$$d2017-02-28$$eReprint$$jZahlung erfolgt$$p201608831$$zHigh-res. PDF-file
000824694 909CO $$ooai:juser.fz-juelich.de:824694$$popenCost$$pOpenAPC$$pVDB
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129727$$aForschungszentrum Jülich$$b0$$kFZJ
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b1$$kFZJ
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156565$$aForschungszentrum Jülich$$b4$$kFZJ
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b5$$kFZJ
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145343$$aForschungszentrum Jülich$$b6$$kFZJ
000824694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b7$$kFZJ
000824694 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000824694 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x1
000824694 9141_ $$y2017
000824694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824694 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824694 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824694 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824694 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824694 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824694 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824694 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000824694 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000824694 9801_ $$aAPC
000824694 980__ $$ajournal
000824694 980__ $$aVDB
000824694 980__ $$aI:(DE-Juel1)IEK-2-20101013
000824694 980__ $$aI:(DE-Juel1)IEK-3-20101013
000824694 980__ $$aAPC
000824694 980__ $$aUNRESTRICTED
000824694 981__ $$aI:(DE-Juel1)IMD-1-20101013
000824694 981__ $$aI:(DE-Juel1)ICE-2-20101013
000824694 981__ $$aI:(DE-Juel1)IEK-3-20101013