001     825123
005     20240712100914.0
024 7 _ |2 ISSN
|a 1680-7367
024 7 _ |2 ISSN
|a 1680-7375
024 7 _ |2 Handle
|a 2128/13632
024 7 _ |2 doi
|a 10.5194/acp-17-3861-2017
024 7 _ |2 WOS
|a WOS:000397933000002
024 7 _ |a altmetric:17850402
|2 altmetric
037 _ _ |a FZJ-2016-07600
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Añel, J. A.
|b 0
245 _ _ |a Global distribution of CO2 in the upper troposphere and stratosphere
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1544077749_16462
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In this study, we aim to reconstruct a relevant and new database of monthly zonal mean distribution of carbon dioxide (CO2) at global scale extending from the upper-troposphere (UT) to stratosphere (S). This product can be used for model and satellite validation in the UT/S, as a prior for inversion modelling and mainly to analyse a plausible feature of the stratospheric-tropospheric exchange as well as the stratospheric circulation and its variability. To do so, we investigate the ability of a Lagrangian trajectory model guided by ERA-Interim reanalysis to construct the CO2 abundance in the UT/S. From 10 year backward trajectories and tropospheric observations of CO2, we reconstruct upper-tropospheric and stratospheric CO2 over the period 2000–2010. The inter-comparisons of the reconstructed CO2 with mid-latitude vertical profiles measured by balloon samples as well as quasi-horizontal air samples from ER-2 aircraft during SOLVE and CONTRAIL campaigns exhibit a remarkable agreement. That demonstrates the potential of Lagrangian model to reconstruct CO2 in the UT/S. The zonal mean distribution exhibits relatively large CO2 in the tropical stratosphere due to the seasonal variation of the tropical upwelling of Brewer-Dobson circulation. During winter and spring, the tropical pipe is relatively isolated but is less narrow during summer and autumn so that high CO2 values are more readily transported out of the tropics to the mid- and high latitude stratosphere. The shape of the vertical profiles suggests that relatively high CO2 above 20 km altitude mainly enter the stratosphere through tropical upwelling. CO2 mixing ratio is relatively low in the polar and tropical regions above 25 km. On average the CO2 mixing ratio decreases with altitude by 6–8 ppmv from the UT to stratosphere (e.g. up to 35 km) and is nearly constant with altitude.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)169614
|a Diallo, Mohamadou Abdoulaye
|b 1
|e Corresponding author
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Legras, Bernhard
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Ray, Eric
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Engel, Andreas
|b 4
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-17-3861-2017
|g p. 1 - 35
|n 6
|p 3861–3878
|t Atmospheric chemistry and physics
|v 17
|x 1680-7316
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/825123/files/acp-17-3861-2017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825123/files/acp-17-3861-2017.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825123/files/acp-17-3861-2017.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825123/files/acp-17-3861-2017.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825123/files/acp-17-3861-2017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:825123
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)169614
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
915 _ _ |0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|a Creative Commons Attribution CC BY (No Version)
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2017
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21