Journal Article FZJ-2016-07673

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
SANS study on the surfactant effect on nanophase separation in epoxy-based hydrogels prepared from α,ω-diamino terminated polyoxypropylene and polyoxyethylene bis(glycidyl ether)

 ;

2016
Elsevier New York, NY [u.a.]

European polymer journal 85, 452 - 465 () [10.1016/j.eurpolymj.2016.10.049]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Effect of a cationic surfactant (myristyltrimethylammonium bromide, C14TAB) on swelling behaviour of epoxy network containing polyoxyethylene (POE) and polyoxypropylene (POP) and structure of resulting hydrogels was studied using small-angle neutron scattering (SANS).Nanophase separated structure of hydrogel prepared by swelling of the network in pure water was revealed. Characteristic length scale of the structure as measured by Bragg’s distance is ca 78 Å. The structure consists of water-poor and water-rich nanodomains separated by a diffuse interface of effective thickness ca 5 Å. Presence of the surfactant in swelling solution has a strong effect on swelling behaviour of the epoxy network and structure of resulting hydrogels. At the macroscopic level, both, the swelling degree and surfactant uptake by the network increase considerably with growing surfactant concentration in swelling solution. At the microscopic level, the two-phase nanophase separated structure is preserved, however, it becomes finer as expressed by a continuous decay of Bragg’s distance from 78 Å (in absence of the surfactant) to 61 Å (highest surfactant concentration). Effective thickness of interface varies between ca 3–6 Å. Presence of the surfactant also induces variation of the neutron scattering length density at much longer length scale of ca 200–1200 Å. Strong binding of the surfactant to POP chains in epoxy network is responsible for the effects observed.

Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
  2. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database

 Record created 2016-12-18, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)