000825452 001__ 825452
000825452 005__ 20240610120309.0
000825452 0247_ $$2doi$$a10.1109/JPHOTOV.2016.2571619
000825452 0247_ $$2WOS$$aWOS:000388963600011
000825452 0247_ $$2altmetric$$aaltmetric:12063160
000825452 037__ $$aFZJ-2016-07915
000825452 082__ $$a530
000825452 1001_ $$0P:(DE-HGF)0$$aSeif, Johannes P.$$b0
000825452 245__ $$aStrategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells
000825452 260__ $$aNew York, NY$$bIEEE$$c2016
000825452 3367_ $$2DRIVER$$aarticle
000825452 3367_ $$2DataCite$$aOutput Types/Journal article
000825452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482421586_976
000825452 3367_ $$2BibTeX$$aARTICLE
000825452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825452 3367_ $$00$$2EndNote$$aJournal Article
000825452 520__ $$aCarrier collection in silicon heterojunction (SHJ) solar cells is usually achieved by doped amorphous silicon layers of a few nanometers, deposited at opposite sides of the crystalline silicon wafer. These layers are often defect-rich, resulting in modest doping efficiencies, parasitic optical absorption when applied at the front of solar cells, and high contact resistivities with the adjacent transparent electrodes. Their substitution by equally thin doped nanocrystalline silicon layers has often been argued to resolve these drawbacks. However, low-temperature deposition of highly crystalline doped layers of such thickness on amorphous surfaces demands sophisticated deposition engineering. In this paper, we review and discuss different strategies to facilitate the nucleation of nanocrystalline silicon layers and assess their compatibility with SHJ solar cell fabrication. We also implement the obtained layers into devices, yielding solar cells with fill factor values of over 79% and efficiencies of over 21.1%, clearly underlining the promise this material holds for SHJ solar cell applications.
000825452 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825452 588__ $$aDataset connected to CrossRef
000825452 7001_ $$0P:(DE-HGF)0$$aDescoeudres, Antoine$$b1
000825452 7001_ $$0P:(DE-HGF)0$$aNogay, Gizem$$b2
000825452 7001_ $$0P:(DE-HGF)0$$aHanni, Simon$$b3
000825452 7001_ $$0P:(DE-HGF)0$$ade Nicolas, Silvia Martin$$b4
000825452 7001_ $$0P:(DE-HGF)0$$aHolm, Niels$$b5
000825452 7001_ $$0P:(DE-HGF)0$$aGeissbuhler, Jonas$$b6
000825452 7001_ $$0P:(DE-HGF)0$$aHessler-Wyser, Aicha$$b7
000825452 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b8
000825452 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9$$ufzj
000825452 7001_ $$0P:(DE-HGF)0$$aLedinsky, Martin$$b10
000825452 7001_ $$0P:(DE-HGF)0$$aDe Wolf, Stefaan$$b11
000825452 7001_ $$0P:(DE-HGF)0$$aBallif, Christophe$$b12
000825452 773__ $$0PERI:(DE-600)2585714-9$$a10.1109/JPHOTOV.2016.2571619$$gVol. 6, no. 5, p. 1132 - 1140$$n5$$p1132 - 1140$$tIEEE journal of photovoltaics$$v6$$x2156-3381$$y2016
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.pdf$$yRestricted
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.gif?subformat=icon$$xicon$$yRestricted
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825452 8564_ $$uhttps://juser.fz-juelich.de/record/825452/files/07494651.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825452 909CO $$ooai:juser.fz-juelich.de:825452$$pVDB
000825452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000825452 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825452 9141_ $$y2016
000825452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825452 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825452 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J PHOTOVOLT : 2015
000825452 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825452 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825452 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825452 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825452 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825452 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825452 920__ $$lyes
000825452 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825452 980__ $$ajournal
000825452 980__ $$aVDB
000825452 980__ $$aUNRESTRICTED
000825452 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825452 981__ $$aI:(DE-Juel1)ER-C-1-20170209