001     825452
005     20240610120309.0
024 7 _ |a 10.1109/JPHOTOV.2016.2571619
|2 doi
024 7 _ |a WOS:000388963600011
|2 WOS
024 7 _ |a altmetric:12063160
|2 altmetric
037 _ _ |a FZJ-2016-07915
082 _ _ |a 530
100 1 _ |a Seif, Johannes P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells
260 _ _ |a New York, NY
|c 2016
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1482421586_976
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Carrier collection in silicon heterojunction (SHJ) solar cells is usually achieved by doped amorphous silicon layers of a few nanometers, deposited at opposite sides of the crystalline silicon wafer. These layers are often defect-rich, resulting in modest doping efficiencies, parasitic optical absorption when applied at the front of solar cells, and high contact resistivities with the adjacent transparent electrodes. Their substitution by equally thin doped nanocrystalline silicon layers has often been argued to resolve these drawbacks. However, low-temperature deposition of highly crystalline doped layers of such thickness on amorphous surfaces demands sophisticated deposition engineering. In this paper, we review and discuss different strategies to facilitate the nucleation of nanocrystalline silicon layers and assess their compatibility with SHJ solar cell fabrication. We also implement the obtained layers into devices, yielding solar cells with fill factor values of over 79% and efficiencies of over 21.1%, clearly underlining the promise this material holds for SHJ solar cell applications.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Descoeudres, Antoine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nogay, Gizem
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hanni, Simon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a de Nicolas, Silvia Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Holm, Niels
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Geissbuhler, Jonas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hessler-Wyser, Aicha
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Duchamp, Martial
|0 P:(DE-Juel1)145413
|b 8
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 9
|u fzj
700 1 _ |a Ledinsky, Martin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a De Wolf, Stefaan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ballif, Christophe
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1109/JPHOTOV.2016.2571619
|g Vol. 6, no. 5, p. 1132 - 1140
|0 PERI:(DE-600)2585714-9
|n 5
|p 1132 - 1140
|t IEEE journal of photovoltaics
|v 6
|y 2016
|x 2156-3381
856 4 _ |u https://juser.fz-juelich.de/record/825452/files/07494651.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825452/files/07494651.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825452/files/07494651.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825452/files/07494651.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825452
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J PHOTOVOLT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21