000825771 001__ 825771
000825771 005__ 20210129225427.0
000825771 0247_ $$2doi$$a10.1016/j.sse.2016.10.024
000825771 0247_ $$2ISSN$$a0038-1101
000825771 0247_ $$2ISSN$$a1879-2405
000825771 0247_ $$2WOS$$aWOS:000392680300010
000825771 037__ $$aFZJ-2017-00076
000825771 082__ $$a530
000825771 1001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, Christian$$b0$$eCorresponding author$$ufzj
000825771 245__ $$aProcess modules for GeSn nanoelectronics with high Sn-contents
000825771 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2017
000825771 3367_ $$2DRIVER$$aarticle
000825771 3367_ $$2DataCite$$aOutput Types/Journal article
000825771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483957413_19246
000825771 3367_ $$2BibTeX$$aARTICLE
000825771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825771 3367_ $$00$$2EndNote$$aJournal Article
000825771 520__ $$aThis paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0–14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.
000825771 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000825771 536__ $$0G:(EU-Grant)619509$$aE2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)$$c619509$$fFP7-ICT-2013-11$$x1
000825771 588__ $$aDataset connected to CrossRef
000825771 7001_ $$0P:(DE-Juel1)165997$$aGlass, S.$$b1$$ufzj
000825771 7001_ $$0P:(DE-Juel1)167568$$aHofmann, E.$$b2$$ufzj
000825771 7001_ $$0P:(DE-Juel1)161180$$aStange, D.$$b3$$ufzj
000825771 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b4$$ufzj
000825771 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b5
000825771 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b6
000825771 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q. T.$$b7$$ufzj
000825771 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b8$$ufzj
000825771 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b9$$ufzj
000825771 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2016.10.024$$gVol. 128, p. 54 - 59$$p54 - 59$$tSolid state electronics$$v128$$x0038-1101$$y2017
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.pdf$$yRestricted
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.gif?subformat=icon$$xicon$$yRestricted
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825771 8564_ $$uhttps://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825771 909CO $$ooai:juser.fz-juelich.de:825771$$pec_fundedresources$$pVDB$$popenaire
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich$$b0$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165997$$aForschungszentrum Jülich$$b1$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167568$$aForschungszentrum Jülich$$b2$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b3$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b4$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b7$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
000825771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b9$$kFZJ
000825771 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000825771 9141_ $$y2017
000825771 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE ELECTRON : 2015
000825771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825771 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825771 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825771 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825771 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825771 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825771 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825771 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825771 920__ $$lyes
000825771 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000825771 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000825771 980__ $$ajournal
000825771 980__ $$aVDB
000825771 980__ $$aI:(DE-Juel1)PGI-9-20110106
000825771 980__ $$aI:(DE-82)080009_20140620
000825771 980__ $$aUNRESTRICTED