001     825771
005     20210129225427.0
024 7 _ |a 10.1016/j.sse.2016.10.024
|2 doi
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a WOS:000392680300010
|2 WOS
037 _ _ |a FZJ-2017-00076
082 _ _ |a 530
100 1 _ |a Schulte-Braucks, Christian
|0 P:(DE-Juel1)161530
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Process modules for GeSn nanoelectronics with high Sn-contents
260 _ _ |a Oxford [u.a.]
|c 2017
|b Pergamon, Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483957413_19246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0–14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)
|0 G:(EU-Grant)619509
|c 619509
|f FP7-ICT-2013-11
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Glass, S.
|0 P:(DE-Juel1)165997
|b 1
|u fzj
700 1 _ |a Hofmann, E.
|0 P:(DE-Juel1)167568
|b 2
|u fzj
700 1 _ |a Stange, D.
|0 P:(DE-Juel1)161180
|b 3
|u fzj
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 4
|u fzj
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhao, Q. T.
|0 P:(DE-Juel1)128649
|b 7
|u fzj
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 8
|u fzj
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 9
|u fzj
773 _ _ |a 10.1016/j.sse.2016.10.024
|g Vol. 128, p. 54 - 59
|0 PERI:(DE-600)2012825-3
|p 54 - 59
|t Solid state electronics
|v 128
|y 2017
|x 0038-1101
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825771/files/1-s2.0-S0038110116301897-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825771
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167568
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE ELECTRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21