%0 Book Section
%A Stange, D.
%A Schulte-Braucks, C.
%A von den Driesch, N.
%A Wirths, S.
%A Mussler, G.
%A Lenk, S.
%A Stoica, T.
%A Mantl, S.
%A Grützmacher, D.
%A Buca, D.
%A Geiger, R.
%A Zabel, T.
%A Sigg, H.
%A Hartmann, J. M.
%A Ikonic, Z.
%Y Luryi, Serge
%Y Xu, Jimmy
%Y Zaslavsky, Alexander
%T High Sn-Content GeSn Light Emitters for Silicon Photonics
%C Hoboken, NJ, USA
%I John Wiley & Sons, Inc.
%M FZJ-2017-00081
%P 181-195
%D 2016
%< Future Trends in Microelectronics / Luryi, Serge (Editor) ; Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016, ; ISBN: 9781119069119 ; doi:10.1002/9781119069225.ch2-6
%X The present chip technology is based on silicon with increasing number of other materials integrated into electrical circuits. This chapter presents a systematic photoluminescence (PL) study of compressively strained, direct-bandgap GeSn alloys, followed by the analysis of two different optical source designs. First, a direct bandgap GeSn light emitting diode (LED) will be characterized via power-and temperature-dependent electroluminescence (EL) measurements. Then, lasing will be demonstrated in a microdisk (MD) resonator under optical pumping. The integration of direct-bandgap GeSn-based devices as a light source for on-chip communications offers the possibility to monolithically integrate the complete photonic circuit within mainstream silicon technology. The chapter describes material properties using Ge0.875Sn0.125 epilayers of various thicknesses. Temperature-dependent integrated PL intensity is a suitable method to determine whether a semiconductor has a direct or indirect fundamental bandgap. In conclusion, the chapter presents growth and optical characterization of high-quality GeSn alloys with very high Sn content.
%F PUB:(DE-HGF)7
%9 Contribution to a book
%R 10.1002/9781119069225.ch2-6
%U https://juser.fz-juelich.de/record/825776