TY - CHAP AU - Stange, D. AU - Schulte-Braucks, C. AU - von den Driesch, N. AU - Wirths, S. AU - Mussler, G. AU - Lenk, S. AU - Stoica, T. AU - Mantl, S. AU - Grützmacher, D. AU - Buca, D. AU - Geiger, R. AU - Zabel, T. AU - Sigg, H. AU - Hartmann, J. M. AU - Ikonic, Z. A3 - Luryi, Serge A3 - Xu, Jimmy A3 - Zaslavsky, Alexander TI - High Sn-Content GeSn Light Emitters for Silicon Photonics CY - Hoboken, NJ, USA PB - John Wiley & Sons, Inc. M1 - FZJ-2017-00081 SP - 181-195 PY - 2016 AB - The present chip technology is based on silicon with increasing number of other materials integrated into electrical circuits. This chapter presents a systematic photoluminescence (PL) study of compressively strained, direct-bandgap GeSn alloys, followed by the analysis of two different optical source designs. First, a direct bandgap GeSn light emitting diode (LED) will be characterized via power-and temperature-dependent electroluminescence (EL) measurements. Then, lasing will be demonstrated in a microdisk (MD) resonator under optical pumping. The integration of direct-bandgap GeSn-based devices as a light source for on-chip communications offers the possibility to monolithically integrate the complete photonic circuit within mainstream silicon technology. The chapter describes material properties using Ge0.875Sn0.125 epilayers of various thicknesses. Temperature-dependent integrated PL intensity is a suitable method to determine whether a semiconductor has a direct or indirect fundamental bandgap. In conclusion, the chapter presents growth and optical characterization of high-quality GeSn alloys with very high Sn content. LB - PUB:(DE-HGF)7 DO - DOI:10.1002/9781119069225.ch2-6 UR - https://juser.fz-juelich.de/record/825776 ER -