TY  - CHAP
AU  - Stange, D.
AU  - Schulte-Braucks, C.
AU  - von den Driesch, N.
AU  - Wirths, S.
AU  - Mussler, G.
AU  - Lenk, S.
AU  - Stoica, T.
AU  - Mantl, S.
AU  - Grützmacher, D.
AU  - Buca, D.
AU  - Geiger, R.
AU  - Zabel, T.
AU  - Sigg, H.
AU  - Hartmann, J. M.
AU  - Ikonic, Z.
A3  - Luryi, Serge
A3  - Xu, Jimmy
A3  - Zaslavsky, Alexander
TI  - High Sn-Content GeSn Light Emitters for Silicon Photonics
CY  - Hoboken, NJ, USA
PB  - John Wiley & Sons, Inc.
M1  - FZJ-2017-00081
SP  - 181-195
PY  - 2016
AB  - The present chip technology is based on silicon with increasing number of other materials integrated into electrical circuits. This chapter presents a systematic photoluminescence (PL) study of compressively strained, direct-bandgap GeSn alloys, followed by the analysis of two different optical source designs. First, a direct bandgap GeSn light emitting diode (LED) will be characterized via power-and temperature-dependent electroluminescence (EL) measurements. Then, lasing will be demonstrated in a microdisk (MD) resonator under optical pumping. The integration of direct-bandgap GeSn-based devices as a light source for on-chip communications offers the possibility to monolithically integrate the complete photonic circuit within mainstream silicon technology. The chapter describes material properties using Ge0.875Sn0.125 epilayers of various thicknesses. Temperature-dependent integrated PL intensity is a suitable method to determine whether a semiconductor has a direct or indirect fundamental bandgap. In conclusion, the chapter presents growth and optical characterization of high-quality GeSn alloys with very high Sn content.
LB  - PUB:(DE-HGF)7
DO  - DOI:10.1002/9781119069225.ch2-6
UR  - https://juser.fz-juelich.de/record/825776
ER  -