000825831 001__ 825831
000825831 005__ 20210129225446.0
000825831 0247_ $$2doi$$a10.5194/hess-2016-432
000825831 0247_ $$2ISSN$$a1812-2108
000825831 0247_ $$2ISSN$$a1812-2116
000825831 0247_ $$2Handle$$a2128/13633
000825831 0247_ $$2altmetric$$aaltmetric:10843377
000825831 037__ $$aFZJ-2017-00133
000825831 082__ $$a550
000825831 1001_ $$0P:(DE-Juel1)144513$$aBaatz, Roland$$b0$$eCorresponding author$$ufzj
000825831 245__ $$aEvaluating the value of a network of cosmic-ray probes for improving land surface modelling
000825831 260__ $$aKatlenburg-Lindau$$bSoc.$$c2016
000825831 3367_ $$2DRIVER$$aarticle
000825831 3367_ $$2DataCite$$aOutput Types/Journal article
000825831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485421813_32137
000825831 3367_ $$2BibTeX$$aARTICLE
000825831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825831 3367_ $$00$$2EndNote$$aJournal Article
000825831 520__ $$aLand surface models can model matter and energy fluxes between the land surface and atmosphere, and provide a lower boundary condition to atmospheric circulation models. For these applications, accurate soil moisture quantification is highly desirable but not always possible given limited observations and limited subsurface data accuracy. Cosmic-ray probes (CRPs) offer an interesting alternative to indirectly measure soil moisture and provide an observation that can be assimilated into land surface models for improved soil moisture prediction. Synthetic studies have shown the potential to estimate subsurface parameters of land surface models with the assimilation of CRP observations. In this study, the potential of a network of CRPs for estimating subsurface parameters and improved soil moisture states is tested in a real-world case scenario using the local ensemble transform Kalman filter with the Community Land Model. The potential of the CRP network was tested by assimilating CRP-data for the years 2011 and 2012 (with or without soil hydraulic parameter estimation), followed by the verification year 2013. This was done using (i) the regional soil map as input information for the simulations, and (ii) an erroneous, biased soil map. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the biased soil map, soil moisture characterization improved in both periods strongly from a ERMS of 0.11 cm3/cm3 to 0.03 cm3/cm3 (assimilation period) and from 0.12 cm3/cm3 to 0.05 cm3/cm3 (verification period) and the estimated soil hydraulic parameters were after assimilation closer to the ones of the regional soil map. Finally, the value of the CRP network was also evaluated with jackknifing data assimilation experiments. It was found that the CRP network is able to improve soil moisture estimates at locations between the assimilation sites from a ERMS of 0.12 cm3/cm3 to 0.06 cm3/cm3 (verification period), but again only if the initial soil map was biased.
000825831 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000825831 588__ $$aDataset connected to CrossRef
000825831 65017 $$0V:(DE-MLZ)GC-170-2016$$2V:(DE-HGF)$$aEarth, Environment and Cultural Heritage$$x0
000825831 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1$$ufzj
000825831 7001_ $$0P:(DE-Juel1)144738$$aHan, Xujun$$b2$$ufzj
000825831 7001_ $$0P:(DE-HGF)0$$aHoar, Tim$$b3
000825831 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4$$ufzj
000825831 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000825831 773__ $$0PERI:(DE-600)2190493-5$$a10.5194/hess-2016-432$$gp. 1 - 36$$p $$tHydrology and earth system sciences discussions$$v $$x1812-2116$$y2016
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.pdf$$yOpenAccess
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.gif?subformat=icon$$xicon$$yOpenAccess
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825831 8564_ $$uhttps://juser.fz-juelich.de/record/825831/files/hess-2016-432.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825831 909CO $$ooai:juser.fz-juelich.de:825831$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144513$$aForschungszentrum Jülich$$b0$$kFZJ
000825831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000825831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144738$$aForschungszentrum Jülich$$b2$$kFZJ
000825831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b4$$kFZJ
000825831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000825831 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000825831 9141_ $$y2016
000825831 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000825831 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825831 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825831 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825831 920__ $$lyes
000825831 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000825831 980__ $$ajournal
000825831 980__ $$aVDB
000825831 980__ $$aUNRESTRICTED
000825831 980__ $$aI:(DE-Juel1)IBG-3-20101118
000825831 9801_ $$aFullTexts