Journal Article FZJ-2017-00133

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Evaluating the value of a network of cosmic-ray probes for improving land surface modelling

 ;  ;  ;  ;  ;

2016
Soc. Katlenburg-Lindau

Hydrology and earth system sciences discussions , () [10.5194/hess-2016-432]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Land surface models can model matter and energy fluxes between the land surface and atmosphere, and provide a lower boundary condition to atmospheric circulation models. For these applications, accurate soil moisture quantification is highly desirable but not always possible given limited observations and limited subsurface data accuracy. Cosmic-ray probes (CRPs) offer an interesting alternative to indirectly measure soil moisture and provide an observation that can be assimilated into land surface models for improved soil moisture prediction. Synthetic studies have shown the potential to estimate subsurface parameters of land surface models with the assimilation of CRP observations. In this study, the potential of a network of CRPs for estimating subsurface parameters and improved soil moisture states is tested in a real-world case scenario using the local ensemble transform Kalman filter with the Community Land Model. The potential of the CRP network was tested by assimilating CRP-data for the years 2011 and 2012 (with or without soil hydraulic parameter estimation), followed by the verification year 2013. This was done using (i) the regional soil map as input information for the simulations, and (ii) an erroneous, biased soil map. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the biased soil map, soil moisture characterization improved in both periods strongly from a ERMS of 0.11 cm3/cm3 to 0.03 cm3/cm3 (assimilation period) and from 0.12 cm3/cm3 to 0.05 cm3/cm3 (verification period) and the estimated soil hydraulic parameters were after assimilation closer to the ones of the regional soil map. Finally, the value of the CRP network was also evaluated with jackknifing data assimilation experiments. It was found that the CRP network is able to improve soil moisture estimates at locations between the assimilation sites from a ERMS of 0.12 cm3/cm3 to 0.06 cm3/cm3 (verification period), but again only if the initial soil map was biased.

Keyword(s): Earth, Environment and Cultural Heritage (1st)

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-01-05, last modified 2021-01-29