001     825831
005     20210129225446.0
024 7 _ |a 10.5194/hess-2016-432
|2 doi
024 7 _ |a 1812-2108
|2 ISSN
024 7 _ |a 1812-2116
|2 ISSN
024 7 _ |a 2128/13633
|2 Handle
024 7 _ |a altmetric:10843377
|2 altmetric
037 _ _ |a FZJ-2017-00133
082 _ _ |a 550
100 1 _ |a Baatz, Roland
|0 P:(DE-Juel1)144513
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Evaluating the value of a network of cosmic-ray probes for improving land surface modelling
260 _ _ |a Katlenburg-Lindau
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485421813_32137
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land surface models can model matter and energy fluxes between the land surface and atmosphere, and provide a lower boundary condition to atmospheric circulation models. For these applications, accurate soil moisture quantification is highly desirable but not always possible given limited observations and limited subsurface data accuracy. Cosmic-ray probes (CRPs) offer an interesting alternative to indirectly measure soil moisture and provide an observation that can be assimilated into land surface models for improved soil moisture prediction. Synthetic studies have shown the potential to estimate subsurface parameters of land surface models with the assimilation of CRP observations. In this study, the potential of a network of CRPs for estimating subsurface parameters and improved soil moisture states is tested in a real-world case scenario using the local ensemble transform Kalman filter with the Community Land Model. The potential of the CRP network was tested by assimilating CRP-data for the years 2011 and 2012 (with or without soil hydraulic parameter estimation), followed by the verification year 2013. This was done using (i) the regional soil map as input information for the simulations, and (ii) an erroneous, biased soil map. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the biased soil map, soil moisture characterization improved in both periods strongly from a ERMS of 0.11 cm3/cm3 to 0.03 cm3/cm3 (assimilation period) and from 0.12 cm3/cm3 to 0.05 cm3/cm3 (verification period) and the estimated soil hydraulic parameters were after assimilation closer to the ones of the regional soil map. Finally, the value of the CRP network was also evaluated with jackknifing data assimilation experiments. It was found that the CRP network is able to improve soil moisture estimates at locations between the assimilation sites from a ERMS of 0.12 cm3/cm3 to 0.06 cm3/cm3 (verification period), but again only if the initial soil map was biased.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
|u fzj
700 1 _ |a Han, Xujun
|0 P:(DE-Juel1)144738
|b 2
|u fzj
700 1 _ |a Hoar, Tim
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 4
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
|u fzj
773 _ _ |a 10.5194/hess-2016-432
|g p. 1 - 36
|0 PERI:(DE-600)2190493-5
|p
|t Hydrology and earth system sciences discussions
|v
|y 2016
|x 1812-2116
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825831/files/hess-2016-432.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825831
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144738
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21