000826069 001__ 826069
000826069 005__ 20240711114044.0
000826069 0247_ $$2doi$$a10.1016/j.nme.2016.11.002
000826069 0247_ $$2Handle$$a2128/15701
000826069 0247_ $$2WOS$$aWOS:000417293300091
000826069 037__ $$aFZJ-2017-00329
000826069 082__ $$a333.7
000826069 1001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b0$$eCorresponding author$$ufzj
000826069 245__ $$aSurface modification of He pre-exposed tungsten samples by He plasma impact in the divertor manipulator of ASDEX Upgrade
000826069 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000826069 3367_ $$2DRIVER$$aarticle
000826069 3367_ $$2DataCite$$aOutput Types/Journal article
000826069 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509024204_28196
000826069 3367_ $$2BibTeX$$aARTICLE
000826069 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826069 3367_ $$00$$2EndNote$$aJournal Article
000826069 520__ $$aTungsten (W) will be used as material for plasma-facing components (PFCs) in the divertor of ITER and interact with Helium (He) ions either from initial He plasma operation or from Deuterium-Tritium (DT) fusion reactions in the active operation phase. Laboratory experiments reported that in a specific operational window of impact energy, ion fluence, and surface temperature (Ein ≥ 20 eV, ϕ ≥ 1 × 1024 Hem Tsurf ≥ 1000 K) a modification of W surfaces occurs resulting in the formation of He-induced W nanostructures. Experiments in ASDEX Upgrade H-mode plasmas ( T, MA, Paux ≃ 8.0 MW) in He have been carried out to investigate in detail (a) the potential growth of W nanostructures on pre-damaged W samples incorporating He nanobubbles, and (b) the potential ELM-induced erosion of W nanostructure. Both W surface modifications were generated artificially in the GLADIS facility by He bombardment of W samples at keV (a) to ϕ ≃ 0.75 × 1024 He0m at Tsurf ≃ 1800 K and (b) ϕ ≃ 1 × 1024 He0m at Tsurf ≃ 2300 K prior to exposure in the divertor manipulator of ASDEX Upgrade. Though in part (a) conditions of W nanostructure growth with a total He ion fluence of ϕ ≃ 1.6 × 1024 Hem and peak He ion impact energies above 150 eV were met, no growth could be detected. In part (b) lower density plasmas with more pronounced type I ELMs, carrying energetic He ions in the keV range, were executed with the strike-line positioned on 2 µm thick W nanostructure accumulating a fluence of ϕ ≃ 0.8 × 1024 Hem. Post-mortem analysis revealed that co-deposition by predominantly W, and Boron (B), eroded at the main chamber wall and transported into the divertor, took place on all W samples. Erosion of W nanostructure or its formation was hindered by the fact that the outer divertor at the location of the samples was turned under these He plasma conditions into a net deposition zone by W, B and Carbon (C) ions. The surface morphology with large roughness and effective surface area act as a catcher for the impinging impurities. Thus, apart from operation in the existence diagram of W nanostructure with respect to Tsurf, ϕ, and Ein, also the impinging impurity flux contribution needs to be considered in predictions concerning the formation of W nanostructures.
000826069 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000826069 588__ $$aDataset connected to CrossRef
000826069 7001_ $$0P:(DE-HGF)0$$aHakola, A.$$b1
000826069 7001_ $$0P:(DE-HGF)0$$aGreuner, H.$$b2
000826069 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b3
000826069 7001_ $$0P:(DE-HGF)0$$aKallenbach, A.$$b4
000826069 7001_ $$0P:(DE-HGF)0$$aOberkofler, M.$$b5
000826069 7001_ $$0P:(DE-HGF)0$$aDe Temmerman, G.$$b6
000826069 7001_ $$0P:(DE-HGF)0$$aDouai, D.$$b7
000826069 7001_ $$0P:(DE-HGF)0$$aLahtinen, A.$$b8
000826069 7001_ $$0P:(DE-HGF)0$$aBöswirth, B.$$b9
000826069 7001_ $$0P:(DE-HGF)0$$aBrida, D.$$b10
000826069 7001_ $$0P:(DE-HGF)0$$aCaniello, R.$$b11
000826069 7001_ $$0P:(DE-HGF)0$$aCarralero, D.$$b12
000826069 7001_ $$0P:(DE-HGF)0$$aElgeti, S.$$b13
000826069 7001_ $$0P:(DE-HGF)0$$aKrieger, K.$$b14
000826069 7001_ $$0P:(DE-HGF)0$$aMayer, H.$$b15
000826069 7001_ $$0P:(DE-HGF)0$$aMeisl, G.$$b16
000826069 7001_ $$0P:(DE-HGF)0$$aPotzel, S.$$b17
000826069 7001_ $$0P:(DE-HGF)0$$aRohde, V.$$b18
000826069 7001_ $$0P:(DE-HGF)0$$aSieglin, B.$$b19
000826069 7001_ $$0P:(DE-Juel1)130166$$aTerra, A.$$b20$$ufzj
000826069 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b21
000826069 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b22$$ufzj
000826069 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.11.002$$gp. S2352179116302472$$p575-581$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.pdf$$yOpenAccess
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.gif?subformat=icon$$xicon$$yOpenAccess
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826069 8564_ $$uhttps://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826069 909CO $$ooai:juser.fz-juelich.de:826069$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b0$$kFZJ
000826069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130166$$aForschungszentrum Jülich$$b20$$kFZJ
000826069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b22$$kFZJ
000826069 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000826069 9141_ $$y2017
000826069 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826069 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000826069 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000826069 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000826069 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826069 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000826069 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826069 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826069 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000826069 9801_ $$aFullTexts
000826069 980__ $$ajournal
000826069 980__ $$aVDB
000826069 980__ $$aUNRESTRICTED
000826069 980__ $$aI:(DE-Juel1)IEK-4-20101013
000826069 981__ $$aI:(DE-Juel1)IFN-1-20101013