Journal Article FZJ-2017-00329

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Surface modification of He pre-exposed tungsten samples by He plasma impact in the divertor manipulator of ASDEX Upgrade

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
Elsevier Amsterdam [u.a.]

Nuclear materials and energy 12, 575-581 () [10.1016/j.nme.2016.11.002]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Tungsten (W) will be used as material for plasma-facing components (PFCs) in the divertor of ITER and interact with Helium (He) ions either from initial He plasma operation or from Deuterium-Tritium (DT) fusion reactions in the active operation phase. Laboratory experiments reported that in a specific operational window of impact energy, ion fluence, and surface temperature (Ein ≥ 20 eV, ϕ ≥ 1 × 1024 Hem Tsurf ≥ 1000 K) a modification of W surfaces occurs resulting in the formation of He-induced W nanostructures. Experiments in ASDEX Upgrade H-mode plasmas ( T, MA, Paux ≃ 8.0 MW) in He have been carried out to investigate in detail (a) the potential growth of W nanostructures on pre-damaged W samples incorporating He nanobubbles, and (b) the potential ELM-induced erosion of W nanostructure. Both W surface modifications were generated artificially in the GLADIS facility by He bombardment of W samples at keV (a) to ϕ ≃ 0.75 × 1024 He0m at Tsurf ≃ 1800 K and (b) ϕ ≃ 1 × 1024 He0m at Tsurf ≃ 2300 K prior to exposure in the divertor manipulator of ASDEX Upgrade. Though in part (a) conditions of W nanostructure growth with a total He ion fluence of ϕ ≃ 1.6 × 1024 Hem and peak He ion impact energies above 150 eV were met, no growth could be detected. In part (b) lower density plasmas with more pronounced type I ELMs, carrying energetic He ions in the keV range, were executed with the strike-line positioned on 2 µm thick W nanostructure accumulating a fluence of ϕ ≃ 0.8 × 1024 Hem. Post-mortem analysis revealed that co-deposition by predominantly W, and Boron (B), eroded at the main chamber wall and transported into the divertor, took place on all W samples. Erosion of W nanostructure or its formation was hindered by the fact that the outer divertor at the location of the samples was turned under these He plasma conditions into a net deposition zone by W, B and Carbon (C) ions. The surface morphology with large roughness and effective surface area act as a catcher for the impinging impurities. Thus, apart from operation in the existence diagram of W nanostructure with respect to Tsurf, ϕ, and Ein, also the impinging impurity flux contribution needs to be considered in predictions concerning the formation of W nanostructures.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)

Appears in the scientific report 2017
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal ; Emerging Sources Citation Index ; SCOPUS ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database
Open Access

 Record created 2017-01-12, last modified 2024-07-11