001     826069
005     20240711114044.0
024 7 _ |a 10.1016/j.nme.2016.11.002
|2 doi
024 7 _ |a 2128/15701
|2 Handle
024 7 _ |a WOS:000417293300091
|2 WOS
037 _ _ |a FZJ-2017-00329
082 _ _ |a 333.7
100 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Surface modification of He pre-exposed tungsten samples by He plasma impact in the divertor manipulator of ASDEX Upgrade
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509024204_28196
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten (W) will be used as material for plasma-facing components (PFCs) in the divertor of ITER and interact with Helium (He) ions either from initial He plasma operation or from Deuterium-Tritium (DT) fusion reactions in the active operation phase. Laboratory experiments reported that in a specific operational window of impact energy, ion fluence, and surface temperature (Ein ≥ 20 eV, ϕ ≥ 1 × 1024 Hem Tsurf ≥ 1000 K) a modification of W surfaces occurs resulting in the formation of He-induced W nanostructures. Experiments in ASDEX Upgrade H-mode plasmas ( T, MA, Paux ≃ 8.0 MW) in He have been carried out to investigate in detail (a) the potential growth of W nanostructures on pre-damaged W samples incorporating He nanobubbles, and (b) the potential ELM-induced erosion of W nanostructure. Both W surface modifications were generated artificially in the GLADIS facility by He bombardment of W samples at keV (a) to ϕ ≃ 0.75 × 1024 He0m at Tsurf ≃ 1800 K and (b) ϕ ≃ 1 × 1024 He0m at Tsurf ≃ 2300 K prior to exposure in the divertor manipulator of ASDEX Upgrade. Though in part (a) conditions of W nanostructure growth with a total He ion fluence of ϕ ≃ 1.6 × 1024 Hem and peak He ion impact energies above 150 eV were met, no growth could be detected. In part (b) lower density plasmas with more pronounced type I ELMs, carrying energetic He ions in the keV range, were executed with the strike-line positioned on 2 µm thick W nanostructure accumulating a fluence of ϕ ≃ 0.8 × 1024 Hem. Post-mortem analysis revealed that co-deposition by predominantly W, and Boron (B), eroded at the main chamber wall and transported into the divertor, took place on all W samples. Erosion of W nanostructure or its formation was hindered by the fact that the outer divertor at the location of the samples was turned under these He plasma conditions into a net deposition zone by W, B and Carbon (C) ions. The surface morphology with large roughness and effective surface area act as a catcher for the impinging impurities. Thus, apart from operation in the existence diagram of W nanostructure with respect to Tsurf, ϕ, and Ein, also the impinging impurity flux contribution needs to be considered in predictions concerning the formation of W nanostructures.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hakola, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Greuner, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Balden, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kallenbach, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Oberkofler, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a De Temmerman, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Douai, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lahtinen, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Böswirth, B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Brida, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Caniello, R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Carralero, D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Elgeti, S.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Krieger, K.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mayer, H.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Meisl, G.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Potzel, S.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Rohde, V.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Sieglin, B.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 20
|u fzj
700 1 _ |a Neu, R.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 22
|u fzj
773 _ _ |a 10.1016/j.nme.2016.11.002
|g p. S2352179116302472
|0 PERI:(DE-600)2808888-8
|p 575-581
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826069/files/1-s2.0-S2352179116302472-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:826069
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21