000826347 001__ 826347
000826347 005__ 20210129225603.0
000826347 0247_ $$2doi$$a10.1021/acsnano.5b07020
000826347 0247_ $$2ISSN$$a1936-0851
000826347 0247_ $$2ISSN$$a1936-086X
000826347 0247_ $$2WOS$$aWOS:000369115800166
000826347 0247_ $$2altmetric$$aaltmetric:4984241
000826347 0247_ $$2pmid$$apmid:26738414
000826347 037__ $$aFZJ-2017-00575
000826347 082__ $$a540
000826347 1001_ $$0P:(DE-Juel1)145323$$aMoors, Marco$$b0
000826347 245__ $$aResistive Switching Mechanisms on TaO$_{x}$ and SrRuO$_{3}$ Thin-Film Surfaces Probed by Scanning Tunneling Microscopy
000826347 260__ $$aWashington, DC$$bSoc.$$c2016
000826347 3367_ $$2DRIVER$$aarticle
000826347 3367_ $$2DataCite$$aOutput Types/Journal article
000826347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484720643_22333
000826347 3367_ $$2BibTeX$$aARTICLE
000826347 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826347 3367_ $$00$$2EndNote$$aJournal Article
000826347 520__ $$aThe local electronic properties of tantalum oxide (TaOx, 2 ≤ x ≤ 2.5) and strontium ruthenate (SrRuO3) thin-film surfaces were studied under the influence of electric fields induced by a scanning tunneling microscope (STM) tip. The switching between different redox states in both oxides is achieved without the need for physical electrical contact by controlling the magnitude and polarity of the applied voltage between the STM tip and the sample surface. We demonstrate for TaOx films that two switching mechanisms operate. Reduced tantalum oxide shows resistive switching due to the formation of metallic Ta, but partial oxidation of the samples changes the switching mechanism to one mediated mainly by oxygen vacancies. For SrRuO3, we found that the switching mechanism depends on the polarity of the applied voltage and involves formation, annihilation, and migration of oxygen vacancies. Although TaOx and SrRuO3 differ significantly in their electronic and structural properties, the resistive switching mechanisms could be elaborated based on STM measurements, proving the general capability of this method for studying resistive switching phenomena in different classes of transition metal oxides.
000826347 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000826347 588__ $$aDataset connected to CrossRef
000826347 7001_ $$0P:(DE-HGF)0$$aAdepalli, Kiran Kumar$$b1
000826347 7001_ $$0P:(DE-HGF)0$$aLu, Qiyang$$b2
000826347 7001_ $$0P:(DE-Juel1)162259$$aWedig, Anja$$b3
000826347 7001_ $$0P:(DE-Juel1)159254$$aBäumer, Christoph$$b4
000826347 7001_ $$0P:(DE-Juel1)145428$$aSkaja, Katharina$$b5
000826347 7001_ $$0P:(DE-Juel1)158055$$aArndt, Benedikt$$b6
000826347 7001_ $$0P:(DE-HGF)0$$aTuller, Harry Louis$$b7
000826347 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b8
000826347 7001_ $$0P:(DE-HGF)0$$aYildiz, Bilge$$b9$$eCorresponding author
000826347 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b10
000826347 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b11
000826347 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5b07020$$gVol. 10, no. 1, p. 1481 - 1492$$n1$$p1481 - 1492$$tACS nano$$v10$$x1936-086X$$y2016
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.pdf$$yRestricted
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.gif?subformat=icon$$xicon$$yRestricted
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826347 8564_ $$uhttps://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826347 909CO $$ooai:juser.fz-juelich.de:826347$$pVDB
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145323$$aForschungszentrum Jülich$$b0$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b4$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145428$$aForschungszentrum Jülich$$b5$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158055$$aForschungszentrum Jülich$$b6$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b8$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b10$$kFZJ
000826347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b11$$kFZJ
000826347 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826347 9141_ $$y2016
000826347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2015
000826347 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2015
000826347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826347 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826347 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826347 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826347 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826347 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826347 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000826347 980__ $$ajournal
000826347 980__ $$aVDB
000826347 980__ $$aUNRESTRICTED
000826347 980__ $$aI:(DE-Juel1)PGI-7-20110106