Journal Article FZJ-2017-00575

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Resistive Switching Mechanisms on TaO$_{x}$ and SrRuO$_{3}$ Thin-Film Surfaces Probed by Scanning Tunneling Microscopy

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Soc. Washington, DC

ACS nano 10(1), 1481 - 1492 () [10.1021/acsnano.5b07020]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The local electronic properties of tantalum oxide (TaOx, 2 ≤ x ≤ 2.5) and strontium ruthenate (SrRuO3) thin-film surfaces were studied under the influence of electric fields induced by a scanning tunneling microscope (STM) tip. The switching between different redox states in both oxides is achieved without the need for physical electrical contact by controlling the magnitude and polarity of the applied voltage between the STM tip and the sample surface. We demonstrate for TaOx films that two switching mechanisms operate. Reduced tantalum oxide shows resistive switching due to the formation of metallic Ta, but partial oxidation of the samples changes the switching mechanism to one mediated mainly by oxygen vacancies. For SrRuO3, we found that the switching mechanism depends on the polarity of the applied voltage and involves formation, annihilation, and migration of oxygen vacancies. Although TaOx and SrRuO3 differ significantly in their electronic and structural properties, the resistive switching mechanisms could be elaborated based on STM measurements, proving the general capability of this method for studying resistive switching phenomena in different classes of transition metal oxides.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2017-01-17, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)