001     826347
005     20210129225603.0
024 7 _ |a 10.1021/acsnano.5b07020
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a WOS:000369115800166
|2 WOS
024 7 _ |a altmetric:4984241
|2 altmetric
024 7 _ |a pmid:26738414
|2 pmid
037 _ _ |a FZJ-2017-00575
082 _ _ |a 540
100 1 _ |a Moors, Marco
|0 P:(DE-Juel1)145323
|b 0
245 _ _ |a Resistive Switching Mechanisms on TaO$_{x}$ and SrRuO$_{3}$ Thin-Film Surfaces Probed by Scanning Tunneling Microscopy
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484720643_22333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The local electronic properties of tantalum oxide (TaOx, 2 ≤ x ≤ 2.5) and strontium ruthenate (SrRuO3) thin-film surfaces were studied under the influence of electric fields induced by a scanning tunneling microscope (STM) tip. The switching between different redox states in both oxides is achieved without the need for physical electrical contact by controlling the magnitude and polarity of the applied voltage between the STM tip and the sample surface. We demonstrate for TaOx films that two switching mechanisms operate. Reduced tantalum oxide shows resistive switching due to the formation of metallic Ta, but partial oxidation of the samples changes the switching mechanism to one mediated mainly by oxygen vacancies. For SrRuO3, we found that the switching mechanism depends on the polarity of the applied voltage and involves formation, annihilation, and migration of oxygen vacancies. Although TaOx and SrRuO3 differ significantly in their electronic and structural properties, the resistive switching mechanisms could be elaborated based on STM measurements, proving the general capability of this method for studying resistive switching phenomena in different classes of transition metal oxides.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Adepalli, Kiran Kumar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Qiyang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wedig, Anja
|0 P:(DE-Juel1)162259
|b 3
700 1 _ |a Bäumer, Christoph
|0 P:(DE-Juel1)159254
|b 4
700 1 _ |a Skaja, Katharina
|0 P:(DE-Juel1)145428
|b 5
700 1 _ |a Arndt, Benedikt
|0 P:(DE-Juel1)158055
|b 6
700 1 _ |a Tuller, Harry Louis
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 8
700 1 _ |a Yildiz, Bilge
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 10
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 11
773 _ _ |a 10.1021/acsnano.5b07020
|g Vol. 10, no. 1, p. 1481 - 1492
|0 PERI:(DE-600)2383064-5
|n 1
|p 1481 - 1492
|t ACS nano
|v 10
|y 2016
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/826347/files/acsnano.5b07020.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826347
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145428
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)158055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21