000826806 001__ 826806
000826806 005__ 20240610120356.0
000826806 0247_ $$2doi$$a10.1063/1.4973765
000826806 0247_ $$2ISSN$$a0003-6951
000826806 0247_ $$2ISSN$$a1077-3118
000826806 0247_ $$2WOS$$aWOS:000392835300034
000826806 0247_ $$2Handle$$a2128/16968
000826806 037__ $$aFZJ-2017-01023
000826806 082__ $$a530
000826806 1001_ $$0P:(DE-Juel1)145975$$aPortz, V.$$b0
000826806 245__ $$aFermi-level pinning and intrinsic surface states of Al$_{1−x}$In$_{x}$N(101¯0) surfaces
000826806 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2017
000826806 3367_ $$2DRIVER$$aarticle
000826806 3367_ $$2DataCite$$aOutput Types/Journal article
000826806 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485357180_2198
000826806 3367_ $$2BibTeX$$aARTICLE
000826806 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826806 3367_ $$00$$2EndNote$$aJournal Article
000826806 520__ $$aThe electronic structure of Al1−xInxN(101⎯⎯0) surfaces is investigated by cross-sectional scanning tunneling spectroscopy and density functional theory calculations. The surface exhibits empty Al and/or In-derived dangling bond states, which are calculated to be within the fundamental bulk band gap for In compositions smaller than 60%. The energy of the lowest empty In-derived surface state is extracted from the tunnel spectra for lattice-matched Al1–xInxN with In compositions of x = 0.19 and x = 0.20 to be EC − 1.82 ± 0.41 and EC − 1.80 ± 0.56 eV, respectively, in good agreement with the calculated energies. Under growth conditions, the Fermi level is hence pinned (unpinned) for In compositions smaller (larger) than 60%. The analysis of the tunnel spectra suggests an electron affinity of ∼3.5 eV for nonpolar lattice-matched Al1–xInxN cleavage surfaces, which is large compared to linearly interpolated values of polar AlN and InN (0001) surfaces.
000826806 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000826806 588__ $$aDataset connected to CrossRef
000826806 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, M.$$b1
000826806 7001_ $$0P:(DE-HGF)0$$aLymperakis, L.$$b2
000826806 7001_ $$0P:(DE-HGF)0$$aNeugebauer, J.$$b3
000826806 7001_ $$0P:(DE-HGF)0$$aEisele, H.$$b4
000826806 7001_ $$0P:(DE-HGF)0$$aCarlin, J.-F.$$b5
000826806 7001_ $$00000-0002-8474-217X$$aButté, R.$$b6
000826806 7001_ $$00000-0003-3610-981X$$aGrandjean, N.$$b7
000826806 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8
000826806 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b9
000826806 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4973765$$gVol. 110, no. 2, p. 022104 -$$n2$$p022104 -$$tApplied physics letters$$v110$$x1077-3118$$y2017
000826806 8564_ $$uhttps://juser.fz-juelich.de/record/826806/files/1.4973765.pdf$$yOpenAccess
000826806 8564_ $$uhttps://juser.fz-juelich.de/record/826806/files/1.4973765.gif?subformat=icon$$xicon$$yOpenAccess
000826806 8564_ $$uhttps://juser.fz-juelich.de/record/826806/files/1.4973765.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826806 8564_ $$uhttps://juser.fz-juelich.de/record/826806/files/1.4973765.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000826806 8564_ $$uhttps://juser.fz-juelich.de/record/826806/files/1.4973765.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826806 909CO $$ooai:juser.fz-juelich.de:826806$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000826806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145975$$aForschungszentrum Jülich$$b0$$kFZJ
000826806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b1$$kFZJ
000826806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000826806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b9$$kFZJ
000826806 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000826806 9141_ $$y2017
000826806 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826806 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826806 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000826806 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826806 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826806 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826806 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826806 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826806 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826806 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826806 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826806 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826806 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826806 920__ $$lyes
000826806 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000826806 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000826806 9801_ $$aFullTexts
000826806 980__ $$ajournal
000826806 980__ $$aVDB
000826806 980__ $$aUNRESTRICTED
000826806 980__ $$aI:(DE-Juel1)PGI-5-20110106
000826806 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000826806 981__ $$aI:(DE-Juel1)ER-C-1-20170209