Journal Article FZJ-2017-01023

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Fermi-level pinning and intrinsic surface states of Al$_{1−x}$In$_{x}$N(101¯0) surfaces

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
American Inst. of Physics Melville, NY

Applied physics letters 110(2), 022104 - () [10.1063/1.4973765]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The electronic structure of Al1−xInxN(101⎯⎯0) surfaces is investigated by cross-sectional scanning tunneling spectroscopy and density functional theory calculations. The surface exhibits empty Al and/or In-derived dangling bond states, which are calculated to be within the fundamental bulk band gap for In compositions smaller than 60%. The energy of the lowest empty In-derived surface state is extracted from the tunnel spectra for lattice-matched Al1–xInxN with In compositions of x = 0.19 and x = 0.20 to be EC − 1.82 ± 0.41 and EC − 1.80 ± 0.56 eV, respectively, in good agreement with the calculated energies. Under growth conditions, the Fermi level is hence pinned (unpinned) for In compositions smaller (larger) than 60%. The analysis of the tunnel spectra suggests an electron affinity of ∼3.5 eV for nonpolar lattice-matched Al1–xInxN cleavage surfaces, which is large compared to linearly interpolated values of polar AlN and InN (0001) surfaces.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
  2. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 141 - Controlling Electron Charge-Based Phenomena (POF3-141) (POF3-141)

Appears in the scientific report 2017
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-01-25, last modified 2024-06-10