000827052 001__ 827052
000827052 005__ 20240610120526.0
000827052 0247_ $$2doi$$a10.1103/PhysRevLett.117.154801
000827052 0247_ $$2ISSN$$a0031-9007
000827052 0247_ $$2ISSN$$a1079-7114
000827052 0247_ $$2ISSN$$a1092-0145
000827052 0247_ $$2Handle$$a2128/13677
000827052 0247_ $$2WOS$$aWOS:000385341900015
000827052 0247_ $$2altmetric$$aaltmetric:12521612
000827052 0247_ $$2pmid$$apmid:27768337
000827052 037__ $$aFZJ-2017-01258
000827052 082__ $$a550
000827052 1001_ $$0P:(DE-HGF)0$$aLarocque, Hugo$$b0
000827052 245__ $$aNondestructive Measurement of Orbital Angular Momentum for an Electron Beam
000827052 260__ $$aCollege Park, Md.$$bAPS$$c2016
000827052 3367_ $$2DRIVER$$aarticle
000827052 3367_ $$2DataCite$$aOutput Types/Journal article
000827052 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485789409_31083
000827052 3367_ $$2BibTeX$$aARTICLE
000827052 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827052 3367_ $$00$$2EndNote$$aJournal Article
000827052 520__ $$aFree electrons with a helical phase front, referred to as “twisted” electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam’s OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron’s OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.
000827052 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827052 588__ $$aDataset connected to CrossRef
000827052 7001_ $$0P:(DE-HGF)0$$aBouchard, Frédéric$$b1
000827052 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b2
000827052 7001_ $$0P:(DE-HGF)0$$aSit, Alicia$$b3
000827052 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b4
000827052 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5
000827052 7001_ $$0P:(DE-HGF)0$$aPadgett, Miles J.$$b6
000827052 7001_ $$0P:(DE-HGF)0$$aBoyd, Robert W.$$b7
000827052 7001_ $$0P:(DE-HGF)0$$aKarimi, Ebrahim$$b8$$eCorresponding author
000827052 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.117.154801$$gVol. 117, no. 15, p. 154801$$n15$$p154801$$tPhysical review letters$$v117$$x1079-7114$$y2016
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.pdf$$yOpenAccess
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.gif?subformat=icon$$xicon$$yOpenAccess
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827052 8564_ $$uhttps://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827052 909CO $$ooai:juser.fz-juelich.de:827052$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827052 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827052 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827052 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000827052 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000827052 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000827052 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827052 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827052 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827052 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827052 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827052 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827052 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827052 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827052 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827052 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827052 9141_ $$y2016
000827052 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000827052 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827052 920__ $$lyes
000827052 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000827052 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000827052 9801_ $$aFullTexts
000827052 980__ $$ajournal
000827052 980__ $$aVDB
000827052 980__ $$aUNRESTRICTED
000827052 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827052 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827052 981__ $$aI:(DE-Juel1)ER-C-1-20170209