Journal Article FZJ-2017-01258

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

 ;  ;  ;  ;  ;  ;  ;  ;

2016
APS College Park, Md.

Physical review letters 117(15), 154801 () [10.1103/PhysRevLett.117.154801]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Free electrons with a helical phase front, referred to as “twisted” electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam’s OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron’s OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
  2. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2016
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-01-30, last modified 2024-06-10