001     827052
005     20240610120526.0
024 7 _ |a 10.1103/PhysRevLett.117.154801
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/13677
|2 Handle
024 7 _ |a WOS:000385341900015
|2 WOS
024 7 _ |a altmetric:12521612
|2 altmetric
024 7 _ |a pmid:27768337
|2 pmid
037 _ _ |a FZJ-2017-01258
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Larocque, Hugo
|b 0
245 _ _ |a Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam
260 _ _ |a College Park, Md.
|b APS
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1485789409_31083
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Free electrons with a helical phase front, referred to as “twisted” electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam’s OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron’s OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Bouchard, Frédéric
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Grillo, Vincenzo
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Sit, Alicia
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Frabboni, Stefano
|b 4
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, Rafal
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Padgett, Miles J.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Boyd, Robert W.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Karimi, Ebrahim
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.117.154801
|g Vol. 117, no. 15, p. 154801
|n 15
|p 154801
|t Physical review letters
|v 117
|x 1079-7114
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827052/files/PhysRevLett.117.154801.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:827052
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144121
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV LETT : 2015
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b PHYS REV LETT : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21