Journal Article FZJ-2017-01294

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Ultra-thin YBa$_{2}$Cu$_{3}$O$_{7-x}$ films with high critical current density

 ;  ;

2016
IOP Publ. Bristol

Superconductor science and technology 29(6), 065017 () [10.1088/0953-2048/29/6/065017]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Despite impressive progress in the development of superconducting nanowire single-photon detectors (SNSPD), the main obstacle for the widespread use of such detectors is the low operating temperature required for low-temperature superconductors. The very attractive idea of increasing the operating temperature using high-temperature superconductors for SNSPD fabrication is problematic due to the insufficient quality of ultra-thin films from high-temperature superconductors, which is one of the key requirements for the single-photon detection by superconducting nanowires. In this work, we demonstrate the possibility of fabricating ultra-thin YBa2Cu3O7−x films on SrTiO3 substrates with a surface flatness of ±1 unit cell and a high critical current density up to 14 MA cm−2 at T = 78 K. The critical current density of ultra-thin films had very low value in the first three unit cell layers adjacent to the substrate and reached nearly the bulk value at the fifth layer. 97% of the superconducting current is carried by only two upper layers of a 5-unit-cell thick YBa2Cu3O7−x film. Due to such superconducting current distribution over the film thickness and good surface flatness 5-unit-cell thick YBa2Cu3O7−x films could be promising for the fabrication of single-photon detectors.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2017-01-31, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)