000827140 001__ 827140
000827140 005__ 20240711114126.0
000827140 0247_ $$2doi$$a10.1016/j.nme.2016.08.002
000827140 0247_ $$2Handle$$a2128/13684
000827140 0247_ $$2WOS$$aWOS:000391191500026
000827140 037__ $$aFZJ-2017-01338
000827140 082__ $$a333.7
000827140 1001_ $$0P:(DE-Juel1)156279$$aSteudel, I.$$b0$$eCorresponding author
000827140 245__ $$aMelt-layer formation on PFMs and the consequences for the material performance
000827140 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000827140 3367_ $$2DRIVER$$aarticle
000827140 3367_ $$2DataCite$$aOutput Types/Journal article
000827140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485864852_18209
000827140 3367_ $$2BibTeX$$aARTICLE
000827140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827140 3367_ $$00$$2EndNote$$aJournal Article
000827140 520__ $$aOne of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A = 245 MW/m2, B = 708 MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.
000827140 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000827140 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000827140 588__ $$aDataset connected to CrossRef
000827140 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b1$$eCorresponding author
000827140 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b2
000827140 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b3
000827140 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b4
000827140 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b5
000827140 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b6
000827140 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.08.002$$gVol. 9, p. 153 - 156$$p153 - 156$$tNuclear materials and energy$$v9$$x2352-1791$$y2016
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.pdf$$yOpenAccess
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.gif?subformat=icon$$xicon$$yOpenAccess
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827140 8564_ $$uhttps://juser.fz-juelich.de/record/827140/files/1-s2.0-S2352179115301150-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827140 909CO $$ooai:juser.fz-juelich.de:827140$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156279$$aForschungszentrum Jülich$$b0$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b1$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b2$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b3$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b4$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b5$$kFZJ
000827140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b6$$kFZJ
000827140 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000827140 9141_ $$y2016
000827140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827140 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000827140 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000827140 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000827140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827140 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000827140 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827140 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000827140 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000827140 9801_ $$aFullTexts
000827140 980__ $$ajournal
000827140 980__ $$aVDB
000827140 980__ $$aUNRESTRICTED
000827140 980__ $$aI:(DE-Juel1)IEK-4-20101013
000827140 980__ $$aI:(DE-Juel1)IEK-2-20101013
000827140 981__ $$aI:(DE-Juel1)IMD-1-20101013
000827140 981__ $$aI:(DE-Juel1)IFN-1-20101013