Journal Article FZJ-2017-01338

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Melt-layer formation on PFMs and the consequences for the material performance

 ;  ;  ;  ;  ;  ;

2016
Elsevier Amsterdam [u.a.]

Nuclear materials and energy 9, 153 - 156 () [10.1016/j.nme.2016.08.002]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: One of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A = 245 MW/m2, B = 708 MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal ; Emerging Sources Citation Index ; SCOPUS ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-1
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-2
IEK > IEK-4
Publications database
Open Access

 Record created 2017-01-31, last modified 2024-07-11