000827146 001__ 827146
000827146 005__ 20240711114126.0
000827146 0247_ $$2doi$$a10.1016/j.nme.2016.11.001
000827146 0247_ $$2Handle$$a2128/16303
000827146 0247_ $$2WOS$$aWOS:000417293300044
000827146 037__ $$aFZJ-2017-01344
000827146 082__ $$a333.7
000827146 1001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b0$$eCorresponding author$$ufzj
000827146 245__ $$aThe microstructure of tungsten exposed to D plasma with different impurities
000827146 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000827146 3367_ $$2DRIVER$$aarticle
000827146 3367_ $$2DataCite$$aOutput Types/Journal article
000827146 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514878710_30397
000827146 3367_ $$2BibTeX$$aARTICLE
000827146 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827146 3367_ $$00$$2EndNote$$aJournal Article
000827146 520__ $$aIn this study the effect of impurities in deuterium plasma on the tungsten microstructure is investigated. W samples were exposed in the linear plasma generator PSI-2 at a sample temperature of 500 K with an incident ion flux of about 1022 m−2s−1, an incident ion fluence of 5 × 1025 m−2 and an incident ion energy of 70 eV. Samples were exposed to pure D+ plasma and with additional impurities of He (3%), Ar (7%), Ne (10%) or N (5%). After the PSI-2 exposure a part of each sample was additionally loaded with tritium to measure the tritium uptake using the imaging plate technique.The surface morphology was investigated using scanning electron microscope (SEM) combined with a focused ion beam (FIB) utilized for cross-sectioning and thin lamella preparation for the transmission electron microscope (TEM) analysis.Blistering with grain orientation dependence was observed on all exposed samples. Most pronounced blistering is reported for grains with orientation close to (111). The addition of Ar or Ne results in surface erosion with different yields depending on grain orientation. Highest erosion yield is observed for grains with orientation close to (100). Large blisters are present but show signatures of erosion. Less pronounced erosion is visible when adding N. The highest uptake of tritium was reported for the sample exposed to D+He plasma which corresponds to the largest – 18 nm, near surface damage zone revealed by TEM. Lowest tritium accumulation was observed for samples exposed to D+Ar and D+Ne plasmas, which corresponds to the shallowest near surface damage zone, as confirmed by TEM.
000827146 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000827146 588__ $$aDataset connected to CrossRef
000827146 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b1$$ufzj
000827146 7001_ $$0P:(DE-HGF)0$$aTorikai, Y.$$b2
000827146 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3
000827146 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.11.001$$gp. S2352179116301910$$p302-306$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.pdf$$yOpenAccess
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.gif?subformat=icon$$xicon$$yOpenAccess
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827146 8564_ $$uhttps://juser.fz-juelich.de/record/827146/files/1-s2.0-S2352179116301910-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827146 909CO $$ooai:juser.fz-juelich.de:827146$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b0$$kFZJ
000827146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b1$$kFZJ
000827146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000827146 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000827146 9141_ $$y2017
000827146 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827146 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000827146 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000827146 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000827146 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827146 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000827146 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827146 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827146 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000827146 9801_ $$aFullTexts
000827146 980__ $$ajournal
000827146 980__ $$aVDB
000827146 980__ $$aUNRESTRICTED
000827146 980__ $$aI:(DE-Juel1)IEK-4-20101013
000827146 981__ $$aI:(DE-Juel1)IFN-1-20101013