000827368 001__ 827368 000827368 005__ 20240610120558.0 000827368 0247_ $$2doi$$a10.1103/PhysRevLett.118.086101 000827368 0247_ $$2ISSN$$a0031-9007 000827368 0247_ $$2ISSN$$a1079-7114 000827368 0247_ $$2ISSN$$a1092-0145 000827368 0247_ $$2Handle$$a2128/13899 000827368 0247_ $$2WOS$$aWOS:000394667600004 000827368 0247_ $$2altmetric$$aaltmetric:13131858 000827368 0247_ $$2pmid$$apmid:28282203 000827368 037__ $$aFZJ-2017-01504 000827368 082__ $$a550 000827368 1001_ $$0P:(DE-Juel1)164287$$aBorghardt, Sven$$b0$$eCorresponding author 000827368 245__ $$aQuantitative agreement between electron-optical phase images of WSe2 and simulations based on electrostatic potentials that include bonding effects 000827368 260__ $$aCollege Park, Md.$$bAPS$$c2017 000827368 3367_ $$2DRIVER$$aarticle 000827368 3367_ $$2DataCite$$aOutput Types/Journal article 000827368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552630373_9686 000827368 3367_ $$2BibTeX$$aARTICLE 000827368 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000827368 3367_ $$00$$2EndNote$$aJournal Article 000827368 520__ $$aThe quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe2. We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces. 000827368 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0 000827368 536__ $$0G:(DE-Juel1)jpgi90_20150501$$aFirst principle calculations of transition metal dichalcogenides for spin-optoelectronics (jpgi90_20150501)$$cjpgi90_20150501$$fFirst principle calculations of transition metal dichalcogenides for spin-optoelectronics$$x1 000827368 536__ $$0G:(DE-Juel1)jias16_20141101$$aNovel materials for nanoelectronics and spintronics: first principle investigation. (jias16_20141101)$$cjias16_20141101$$fNovel materials for nanoelectronics and spintronics: first principle investigation.$$x2 000827368 588__ $$aDataset connected to CrossRef 000827368 7001_ $$0P:(DE-Juel1)161387$$aWinkler, Florian$$b1$$ufzj 000827368 7001_ $$0P:(DE-Juel1)151302$$aZanolli, Z.$$b2$$ufzj 000827368 7001_ $$0P:(DE-HGF)0$$aVerstraete, M. J.$$b3 000827368 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b4$$ufzj 000827368 7001_ $$0P:(DE-Juel1)157886$$aTavabi, A. H.$$b5$$ufzj 000827368 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b6$$ufzj 000827368 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b7$$ufzj 000827368 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.118.086101$$gVol. 118, no. 8, p. 086101$$n8$$p086101$$tPhysical review letters$$v118$$x1079-7114$$y2017 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf$$yOpenAccess 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.gif?subformat=icon$$xicon$$yOpenAccess 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000827368 8767_ $$84036650094450$$92017-01-26$$d2017-02-27$$ePublication charges$$jZahlung erfolgt 000827368 909CO $$ooai:juser.fz-juelich.de:827368$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164287$$aForschungszentrum Jülich$$b0$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161387$$aForschungszentrum Jülich$$b1$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151302$$aForschungszentrum Jülich$$b2$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b4$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b5$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ 000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b7$$kFZJ 000827368 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000827368 9141_ $$y2017 000827368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000827368 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000827368 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000827368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015 000827368 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015 000827368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000827368 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000827368 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000827368 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000827368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000827368 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000827368 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000827368 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000827368 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000827368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000827368 920__ $$lyes 000827368 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000827368 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1 000827368 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x2 000827368 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x3 000827368 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x4 000827368 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x5 000827368 9801_ $$aAPC 000827368 9801_ $$aFullTexts 000827368 980__ $$ajournal 000827368 980__ $$aVDB 000827368 980__ $$aI:(DE-Juel1)PGI-9-20110106 000827368 980__ $$aI:(DE-Juel1)PGI-5-20110106 000827368 980__ $$aI:(DE-Juel1)PGI-1-20110106 000827368 980__ $$aI:(DE-Juel1)ER-C-2-20170209 000827368 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000827368 980__ $$aI:(DE-82)080012_20140620 000827368 980__ $$aAPC 000827368 980__ $$aUNRESTRICTED 000827368 981__ $$aI:(DE-Juel1)ER-C-1-20170209