000827368 001__ 827368
000827368 005__ 20240610120558.0
000827368 0247_ $$2doi$$a10.1103/PhysRevLett.118.086101
000827368 0247_ $$2ISSN$$a0031-9007
000827368 0247_ $$2ISSN$$a1079-7114
000827368 0247_ $$2ISSN$$a1092-0145
000827368 0247_ $$2Handle$$a2128/13899
000827368 0247_ $$2WOS$$aWOS:000394667600004
000827368 0247_ $$2altmetric$$aaltmetric:13131858
000827368 0247_ $$2pmid$$apmid:28282203
000827368 037__ $$aFZJ-2017-01504
000827368 082__ $$a550
000827368 1001_ $$0P:(DE-Juel1)164287$$aBorghardt, Sven$$b0$$eCorresponding author
000827368 245__ $$aQuantitative agreement between electron-optical phase images of WSe2 and simulations based on electrostatic potentials that include bonding effects
000827368 260__ $$aCollege Park, Md.$$bAPS$$c2017
000827368 3367_ $$2DRIVER$$aarticle
000827368 3367_ $$2DataCite$$aOutput Types/Journal article
000827368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552630373_9686
000827368 3367_ $$2BibTeX$$aARTICLE
000827368 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827368 3367_ $$00$$2EndNote$$aJournal Article
000827368 520__ $$aThe quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe2. We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces.
000827368 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000827368 536__ $$0G:(DE-Juel1)jpgi90_20150501$$aFirst principle calculations of transition metal dichalcogenides for spin-optoelectronics (jpgi90_20150501)$$cjpgi90_20150501$$fFirst principle calculations of transition metal dichalcogenides for spin-optoelectronics$$x1
000827368 536__ $$0G:(DE-Juel1)jias16_20141101$$aNovel materials for nanoelectronics and spintronics: first principle investigation. (jias16_20141101)$$cjias16_20141101$$fNovel materials for nanoelectronics and spintronics: first principle investigation.$$x2
000827368 588__ $$aDataset connected to CrossRef
000827368 7001_ $$0P:(DE-Juel1)161387$$aWinkler, Florian$$b1$$ufzj
000827368 7001_ $$0P:(DE-Juel1)151302$$aZanolli, Z.$$b2$$ufzj
000827368 7001_ $$0P:(DE-HGF)0$$aVerstraete, M. J.$$b3
000827368 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b4$$ufzj
000827368 7001_ $$0P:(DE-Juel1)157886$$aTavabi, A. H.$$b5$$ufzj
000827368 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b6$$ufzj
000827368 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b7$$ufzj
000827368 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.118.086101$$gVol. 118, no. 8, p. 086101$$n8$$p086101$$tPhysical review letters$$v118$$x1079-7114$$y2017
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf$$yOpenAccess
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.gif?subformat=icon$$xicon$$yOpenAccess
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827368 8564_ $$uhttps://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827368 8767_ $$84036650094450$$92017-01-26$$d2017-02-27$$ePublication charges$$jZahlung erfolgt
000827368 909CO $$ooai:juser.fz-juelich.de:827368$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164287$$aForschungszentrum Jülich$$b0$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161387$$aForschungszentrum Jülich$$b1$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151302$$aForschungszentrum Jülich$$b2$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b4$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b5$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000827368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b7$$kFZJ
000827368 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000827368 9141_ $$y2017
000827368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827368 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827368 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000827368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000827368 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000827368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827368 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827368 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827368 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827368 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827368 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827368 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827368 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827368 920__ $$lyes
000827368 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000827368 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000827368 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x2
000827368 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x3
000827368 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x4
000827368 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x5
000827368 9801_ $$aAPC
000827368 9801_ $$aFullTexts
000827368 980__ $$ajournal
000827368 980__ $$aVDB
000827368 980__ $$aI:(DE-Juel1)PGI-9-20110106
000827368 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827368 980__ $$aI:(DE-Juel1)PGI-1-20110106
000827368 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000827368 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827368 980__ $$aI:(DE-82)080012_20140620
000827368 980__ $$aAPC
000827368 980__ $$aUNRESTRICTED
000827368 981__ $$aI:(DE-Juel1)ER-C-1-20170209