001 | 827368 | ||
005 | 20240610120558.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevLett.118.086101 |2 doi |
024 | 7 | _ | |a 0031-9007 |2 ISSN |
024 | 7 | _ | |a 1079-7114 |2 ISSN |
024 | 7 | _ | |a 1092-0145 |2 ISSN |
024 | 7 | _ | |a 2128/13899 |2 Handle |
024 | 7 | _ | |a WOS:000394667600004 |2 WOS |
024 | 7 | _ | |a altmetric:13131858 |2 altmetric |
024 | 7 | _ | |a pmid:28282203 |2 pmid |
037 | _ | _ | |a FZJ-2017-01504 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Borghardt, Sven |0 P:(DE-Juel1)164287 |b 0 |e Corresponding author |
245 | _ | _ | |a Quantitative agreement between electron-optical phase images of WSe2 and simulations based on electrostatic potentials that include bonding effects |
260 | _ | _ | |a College Park, Md. |c 2017 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552630373_9686 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe2. We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
536 | _ | _ | |a First principle calculations of transition metal dichalcogenides for spin-optoelectronics (jpgi90_20150501) |0 G:(DE-Juel1)jpgi90_20150501 |c jpgi90_20150501 |f First principle calculations of transition metal dichalcogenides for spin-optoelectronics |x 1 |
536 | _ | _ | |a Novel materials for nanoelectronics and spintronics: first principle investigation. (jias16_20141101) |0 G:(DE-Juel1)jias16_20141101 |c jias16_20141101 |f Novel materials for nanoelectronics and spintronics: first principle investigation. |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Winkler, Florian |0 P:(DE-Juel1)161387 |b 1 |u fzj |
700 | 1 | _ | |a Zanolli, Z. |0 P:(DE-Juel1)151302 |b 2 |u fzj |
700 | 1 | _ | |a Verstraete, M. J. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Barthel, Juri |0 P:(DE-Juel1)130525 |b 4 |u fzj |
700 | 1 | _ | |a Tavabi, A. H. |0 P:(DE-Juel1)157886 |b 5 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 6 |u fzj |
700 | 1 | _ | |a Kardynal, Beata |0 P:(DE-Juel1)145316 |b 7 |u fzj |
773 | _ | _ | |a 10.1103/PhysRevLett.118.086101 |g Vol. 118, no. 8, p. 086101 |0 PERI:(DE-600)1472655-5 |n 8 |p 086101 |t Physical review letters |v 118 |y 2017 |x 1079-7114 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827368/files/PhysRevLett.118.086101.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:827368 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)164287 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161387 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)151302 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)157886 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145316 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV LETT : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV LETT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 4 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 5 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|