000827997 001__ 827997
000827997 005__ 20230426083143.0
000827997 0247_ $$2doi$$a10.1103/PhysRevB.94.184422
000827997 0247_ $$2ISSN$$a0163-1829
000827997 0247_ $$2ISSN$$a0556-2805
000827997 0247_ $$2ISSN$$a1094-1622
000827997 0247_ $$2ISSN$$a1095-3795
000827997 0247_ $$2ISSN$$a1098-0121
000827997 0247_ $$2ISSN$$a1550-235X
000827997 0247_ $$2ISSN$$a2469-9950
000827997 0247_ $$2ISSN$$a2469-9969
000827997 0247_ $$2Handle$$a2128/14832
000827997 0247_ $$2WOS$$aWOS:000387887100005
000827997 0247_ $$2altmetric$$aaltmetric:9868611
000827997 037__ $$aFZJ-2017-02019
000827997 082__ $$a530
000827997 1001_ $$0P:(DE-HGF)0$$aMacDougall, G. J.$$b0$$eCorresponding author
000827997 245__ $$aRevisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4
000827997 260__ $$aWoodbury, NY$$bInst.$$c2016
000827997 3367_ $$2DRIVER$$aarticle
000827997 3367_ $$2DataCite$$aOutput Types/Journal article
000827997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499245701_16483
000827997 3367_ $$2BibTeX$$aARTICLE
000827997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827997 3367_ $$00$$2EndNote$$aJournal Article
000827997 520__ $$aThe A-site spinel material CoAl2O4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T∗=6.5 K. This paper provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited order is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl2O4, which acts as an unfrustrated analog to CoAl2O4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at TN=39 K. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T∗. The higher level of cation inversion in the MnAl2O4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.
000827997 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000827997 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000827997 542__ $$2Crossref$$i2016-11-17$$uhttp://link.aps.org/licenses/aps-default-license
000827997 542__ $$2Crossref$$i2017-11-17$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000827997 588__ $$aDataset connected to CrossRef
000827997 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000827997 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000827997 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000827997 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000827997 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x1
000827997 7001_ $$0P:(DE-HGF)0$$aAczel, A. A.$$b1
000827997 7001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b2$$ufzj
000827997 7001_ $$0P:(DE-Juel1)130963$$aSchweika, W.$$b3
000827997 7001_ $$0P:(DE-Juel1)166243$$aFaulhaber, E.$$b4
000827997 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, A.$$b5$$ufzj
000827997 7001_ $$0P:(DE-HGF)0$$aChristianson, A. D.$$b6
000827997 7001_ $$0P:(DE-HGF)0$$aZarestky, J. L.$$b7
000827997 7001_ $$0P:(DE-HGF)0$$aZhou, H. D.$$b8
000827997 7001_ $$0P:(DE-HGF)0$$aMandrus, D.$$b9
000827997 7001_ $$0P:(DE-HGF)0$$aNagler, S. E.$$b10
000827997 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.94.184422$$bAmerican Physical Society (APS)$$d2016-11-17$$n18$$p184422$$tPhysical Review B$$v94$$x2469-9950$$y2016
000827997 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.94.184422$$gVol. 94, no. 18, p. 184422$$n18$$p184422$$tPhysical review / B$$v94$$x2469-9950$$y2016
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.pdf$$yOpenAccess
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.gif?subformat=icon$$xicon$$yOpenAccess
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827997 8564_ $$uhttps://juser.fz-juelich.de/record/827997/files/PhysRevB.94.184422.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827997 909CO $$ooai:juser.fz-juelich.de:827997$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000827997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b2$$kFZJ
000827997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b5$$kFZJ
000827997 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000827997 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000827997 9141_ $$y2017
000827997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827997 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827997 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000827997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000827997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827997 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827997 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827997 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827997 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827997 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827997 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827997 920__ $$lyes
000827997 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000827997 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000827997 980__ $$ajournal
000827997 980__ $$aVDB
000827997 980__ $$aUNRESTRICTED
000827997 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000827997 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000827997 9801_ $$aFullTexts
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1107861108
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.116401
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.237402
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.174404
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.132409
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2006.01.413
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.014413
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/14/145262
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/14/145265
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.134406
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.064416
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.094403
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.174415
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.134416
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.174431
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys622
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.144417
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.047201
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.096406
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.224409
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:01964002505050700
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:0198000410110126300
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys3914
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.61.718
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064438
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.82.024702
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.42.666
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(60)90092-5
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-1-35
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(00)00858-9
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-1-33
000827997 999C5 $$1M. F. Collins$$2Crossref$$oM. F. Collins Magnetic Critical Scattering 1989$$tMagnetic Critical Scattering$$y1989
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/211/1/012026
000827997 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.184443