Journal Article FZJ-2017-02019

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Inst. Woodbury, NY

Physical review / B 94(18), 184422 () [10.1103/PhysRevB.94.184422]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The A-site spinel material CoAl2O4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T∗=6.5 K. This paper provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited order is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl2O4, which acts as an unfrustrated analog to CoAl2O4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at TN=39 K. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T∗. The higher level of cation inversion in the MnAl2O4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.

Keyword(s): Magnetic Materials (1st) ; Magnetism (2nd) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
  2. Streumethoden (JCNS-2)
Research Program(s):
  1. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. DNS: Diffuse scattering neutron time of flight spectrometer (NL6S)
  2. PANDA: Cold three axes spectrometer (SR2)

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-03-06, last modified 2023-04-26