000008281 001__ 8281
000008281 005__ 20180208200151.0
000008281 0247_ $$2DOI$$a10.1002/pssr.200903052
000008281 0247_ $$2WOS$$aWOS:000268708800007
000008281 037__ $$aPreJuSER-8281
000008281 041__ $$aeng
000008281 082__ $$a530
000008281 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000008281 084__ $$2WoS$$aPhysics, Applied
000008281 084__ $$2WoS$$aPhysics, Condensed Matter
000008281 1001_ $$0P:(DE-HGF)0$$aMolak, A.$$b0
000008281 245__ $$aInsulator-semiconductor-metallic state transition induced by electric fields in Mn-doped NaNbO3
000008281 260__ $$aWeinheim$$bWiley-VCH$$c2009
000008281 300__ $$a127 - 129
000008281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008281 3367_ $$2DataCite$$aOutput Types/Journal article
000008281 3367_ $$00$$2EndNote$$aJournal Article
000008281 3367_ $$2BibTeX$$aARTICLE
000008281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008281 3367_ $$2DRIVER$$aarticle
000008281 440_0 $$016681$$aPhysica Status Solidi - Rapid Research Letters$$v3$$x1862-6254$$y5
000008281 500__ $$aRecord converted from VDB: 12.11.2012
000008281 520__ $$aThe electro-forming procedure was applied to NaNbO3: Mn and NaNbO3 insulator crystals. The electric current flow induced a transition to the metallic-type temperature dependence of the resistance. The Mn dopant shortened the time needed for the transition. The LC-AFM measurement showed a non-homogeneous distribution in local resistance resulting from the electric field via the AFM tip. We ascribe this effect to percolation in the network of the highly conducting filaments, whose formation is facilitated by the Mn ions. We conclude that the insulator-metal transition is induced within a subsystem of extended defects already existing in the NaNbO3 : Mn crystal lattice host. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim
000008281 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000008281 588__ $$aDataset connected to Web of Science
000008281 650_7 $$2WoSType$$aJ
000008281 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b1$$uFZJ
000008281 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.200903052$$gVol. 3, p. 127 - 129$$p127 - 129$$q3<127 - 129$$tPhysica status solidi / Rapid research letters$$v3$$x1862-6254$$y2009
000008281 8567_ $$uhttp://dx.doi.org/10.1002/pssr.200903052
000008281 909CO $$ooai:juser.fz-juelich.de:8281$$pVDB
000008281 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000008281 9141_ $$y2009
000008281 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008281 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000008281 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000008281 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000008281 970__ $$aVDB:(DE-Juel1)117199
000008281 980__ $$aVDB
000008281 980__ $$aConvertedRecord
000008281 980__ $$ajournal
000008281 980__ $$aI:(DE-Juel1)PGI-7-20110106
000008281 980__ $$aI:(DE-82)080009_20140620
000008281 980__ $$aUNRESTRICTED
000008281 981__ $$aI:(DE-Juel1)PGI-7-20110106
000008281 981__ $$aI:(DE-Juel1)VDB881