001     828117
005     20210129230017.0
024 7 _ |a 10.1063/1.4977431
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a WOS:000397871600054
|2 WOS
024 7 _ |a 2128/16966
|2 Handle
024 7 _ |a altmetric:12093293
|2 altmetric
037 _ _ |a FZJ-2017-02114
082 _ _ |a 530
100 1 _ |a Gity, Farzan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films
260 _ _ |a Melville, NY
|c 2017
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489248589_15219
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ansari, Lida
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lanius, Martin
|0 P:(DE-Juel1)156236
|b 2
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 3
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 4
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 5
700 1 _ |a Greer, J. C.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1063/1.4977431
|g Vol. 110, no. 9, p. 093111 -
|0 PERI:(DE-600)1469436-0
|n 9
|p 093111 -
|t Applied physics letters
|v 110
|y 2017
|x 1077-3118
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|u https://juser.fz-juelich.de/record/828117/files/1.4977431.pdf
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon
|u https://juser.fz-juelich.de/record/828117/files/1.4977431.gif?subformat=icon
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon-180
|u https://juser.fz-juelich.de/record/828117/files/1.4977431.jpg?subformat=icon-180
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon-700
|u https://juser.fz-juelich.de/record/828117/files/1.4977431.jpg?subformat=icon-700
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x pdfa
|u https://juser.fz-juelich.de/record/828117/files/1.4977431.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828117
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156236
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21